結果

問題 No.844 split game
ユーザー stngstng
提出日時 2022-07-16 17:26:22
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 9,794 bytes
コンパイル時間 184 ms
コンパイル使用メモリ 82,200 KB
実行使用メモリ 69,264 KB
最終ジャッジ日時 2024-06-28 17:14:56
合計ジャッジ時間 7,153 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 4
other RE * 56
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

from torch import segment_reduce
n,m,a = map(int,input().split())
lrp = [[int(i)-1 for i in input().split()] for j in range(m)]
import sys
input = sys.stdin.buffer.readline
sys.setrecursionlimit(10 ** 7)
class SegTree(object):
def __init__(self, N, op_data, u_data):
self._n = N
self.log = (N-1).bit_length()
self.size = 1 << self.log
self.op = op_data
self.e = u_data
self.data = [u_data] * (2 * self.size)
# self.len = [1] * (2 * self.size)
def _update(self, i):
self.data[i] = self.op(self.data[i << 1], self.data[i << 1 | 1])
def initialize(self, arr=None):
""" segtreearrlen(arr) == N """
if arr:
for i, a in enumerate(arr, self.size):
self.data[i] = a
for i in reversed(range(1, self.size)):
self._update(i)
# self.len[i] = self.len[i << 1] + self.len[i << 1 | 1]
def update(self, p, x):
""" data[p] = x (0-indexed)"""
p += self.size
self.data[p] = x
for i in range(1, self.log + 1):
self._update(p >> i)
def get(self, p):
""" data[p] """
return self.data[p + self.size]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1]) (0-indexed)
"""
sml = self.e
smr = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
""" op(data[0], data[1], ... data[N-1]) """
return self.data[1]
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = False r
"""
if l == self._n:
return self._n
l += self.size
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[l])):
while l < self.size:
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = False l
"""
if r == 0:
return 0
r += self.size
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
class LazySegTree(SegTree):
def __init__(self, N, op_data, u_data, op_lazy, u_lazy, op_merge):
super().__init__(N, op_data, u_data)
self.composition = op_lazy
self.mapping = op_merge
self.id = u_lazy
self.lazy = [u_lazy] * self.size
def _all_apply(self, i, F):
# self.data[i] = self.mapping(F, self.data[i], self.len[i])
self.data[i] = self.mapping(F, self.data[i])
if i < self.size:
self.lazy[i] = self.composition(F, self.lazy[i])
def _push(self, i):
self._all_apply(i << 1, self.lazy[i])
self._all_apply(i << 1 | 1, self.lazy[i])
self.lazy[i] = self.id
def update(self, p, x):
""" data[p] = x (0-indexed)"""
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
self._update(p >> i)
def apply(self, p, F):
""" data[p]F(data[p] = op_merge(F, data[p]), 0-indexed) """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
# self.data[p] = self.mapping(F, self.data[p], self.len[p])
self.data[p] = self.mapping(F, self.data[p])
for i in range(1, self.log + 1):
self._update(p >> i)
def range_apply(self, l, r, F):
""" i = l, l+1, ..., r-1 F(op_merge(F, data[i]), 0-indexed) """
if l == r:
return
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)): # too->down
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
self._all_apply(l, F)
l += 1
if r & 1:
r -= 1
self._all_apply(r, F)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
self._update(l >> i)
if ((r >> i) << i) != r:
self._update((r - 1) >> i)
def get(self, p):
""" data[p] """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
return self.data[p]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1]) (0-indexed)
l == ru_data
"""
if l == r:
return self.e
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)):
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push(r >> i)
sml = self.e
smr = self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = False r
"""
if l == self._n:
return self._n
l += self.size
for i in reversed(range(1, self.log + 1)):
self._push(l >> i)
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[[l]])):
while l < self.size:
self._push(l)
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = False l
"""
if r == 0:
return 0
r += self.size
for i in reversed(range(1, self.log + 1)):
self._push((r - 1) >> i)
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
self._push(r)
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
"""
(ac-library)
op_data(d_L, d_R) : d_Ld_R, data
op_lazy(lz_new, lz_orig) : lz_origlz_new, lazy
op_merge(lz, d) : dlz, data
"""
u_data = 0
op_data = max
u_lazy = -1
def op_lazy(nw, od):
if nw == -1:
return od
return nw
def op_merge(lz, d):
if lz == -1:
return d
return lz
lrp.sort(key=lambda x:(x[1],x[0]))
dp = [[-10**15]*2 for i in range(n+1)]
dp[0][1] = 0
dp[n][1] = 0
for i in range(n):
dp[i][0] = 0
mv = 0
seg = LazySegTree(n+1, op_data, u_data, op_lazy, u_lazy, op_merge)
seg.initialize()
for i in range(m):
l,r,p = lrp[i]
p += 1
r += 1
if l != 0:
if r != n:
dp[r][1] = max(dp[l][1]+p-a,max(seg.get(l),dp[l][0])+p-2*a,dp[r][1])
else:
dp[r][1] = max(dp[l][1]+p,max(seg.get(l),dp[l][0])+p-a,dp[r][1])
else:
if r != n:
dp[r][1] = max(dp[l][1]+p-a,max(seg.get(l),dp[l][0])+p-a,dp[r][1])
else:
dp[r][1] = max(dp[l][1]+p,max(seg.get(l),dp[l][0])+p,dp[r][1])
#mv = max(mv,dp[r][1])
#L, R = map(int, input().split())
#H = seg.prod(r, n+1)
seg.range_apply(r, n+1, dp[r][1])
ans = 0
#print(dp)
for i in range(n+1):
ans = max(ans,dp[i][0],dp[i][1])
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0