結果

問題 No.981 一般冪乗根
ユーザー fumofumofuni
提出日時 2022-07-18 15:56:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4,422 ms / 6,000 ms
コード長 5,207 bytes
コンパイル時間 2,663 ms
コンパイル使用メモリ 212,956 KB
最終ジャッジ日時 2025-01-30 10:53:01
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 30 MLE * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[8]={1,0,-1,0,1,1,-1,-1};
const ll dx[8]={0,1,0,-1,1,-1,1,-1};
template <typename T> inline bool chmax(T &a, T b) {
return ((a < b) ? (a = b, true) : (false));
}
template <typename T> inline bool chmin(T &a, T b) {
return ((a > b) ? (a = b, true) : (false));
}
//N=10^5,s<=10^101000ms
struct fast_factorize{
using i128=__int128_t;
vector<int> wit={2, 325, 9375, 28178, 450775, 9780504, 1795265022};
ll modpow(ll a,ll b,ll m){
ll ret=1,now=a;
while(b){
if(b&1)ret=i128(ret)*now%m;
now=i128(now)*now%m;
b>>=1;
}
return ret;
}
bool isprime(ll p){
if(p==2)return true;
if(p==1||p%2==0)return false;
ll s=0,d=p-1;
while(d%2==0){
d/=2;s++;
}
for(auto a:wit){
if(a%p==0)continue;
bool iscomp=true;
ll x=modpow(a,d,p);
if(x==1)iscomp=false;
rep(i,s){
if(x==p-1)iscomp=false;
x=i128(x)*x%p;
}
if(iscomp)return false;
}
return true;
}
long long find_factor(long long n) {
assert(n > 1);
if (n % 2 == 0) return 2;
if (isprime(n)) return n;
auto f = [&](__int128 x) -> long long { return (x * x + 1) % n; };
for (int t = 1;; t++) {
long long x0 = t, m = max(n >> 3, 1LL), x, ys, y = x0, r = 1, g, q = 1;
do {
x = y;
for (int i = r; i--;) y = f(y);
long long k = 0;
do {
ys = y;
for (int i = min(m, r - k); i--;) y = f(y), q = __int128(q) * abs(x - y) % n;
g = gcd(q, n);
k += m;
} while (k < r and g <= 1);
r <<= 1;
} while (g <= 1);
if (g == n) {
do {
ys = f(ys);
g = gcd(abs(x - ys), n);
} while (g <= 1);
}
if (g != n) return g;
}
}
vector<ll> factor(ll n){
vector<ll> ret;
while(n>1){
ll f=find_factor(n);
if(f<n){
auto tmp=factor(f);
ret.insert(ret.end(),all(tmp));
}
else ret.emplace_back(n);
n/=f;
}
sort(all(ret));
return ret;
}
};
fast_factorize fz;
ll modpow(ll a,ll n, ll mod) {
if(n==0)return 1;
a%=mod;if(a==0)return 0;
ll res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
random_device rd; mt19937 mt(rd());
ll primitive_root(ll n){
uniform_int_distribution<> rand(2,n-1);
auto f=fz.factor(n-1);
while(1){
ll r=rand(mt);
bool ok=true;
for(auto q:f){
if(modpow(r,(n-1)/q,n)==1)ok=false;
}
if(ok)return r;
}
}
ll euler_phi(ll n) {
ll ret = n;
for(ll i = 2; i * i <= n; i++) {
if(n % i == 0) {
ret -= ret / i;
while(n % i == 0) n /= i;
}
}
if(n > 1) ret -= ret / n;
return ret;
}
//
// : a b
// ax + by = gcd(a, b) (x, y)
long long extGcd(long long a, long long b, long long &x, long long &y) {
if (b == 0) { x = 1; y = 0; return a; }
long long d = extGcd(b, a%b, y, x);
y -= a/b * x;
return d;
}
ll calc(ll a,ll e,ll m){//ax=e mod mx-1
ll g=gcd(a,m);
if(e%g!=0)return -1;
ll x,y;
extGcd(a,m,x,y);
x*=e/g;
return ((x%m)+m)%m;
}
void solve(){
ll p,k,a;cin >> p >> k >> a;
if(p==2){
cout << 1 << endl;return;
}
/*if(gcd(k,p-1)!=1){
cout << -1 << endl;return;
}*/
ll e=0;
ll r=primitive_root(p);
{
unordered_map<int,int> mp;
ll now=1;
for(int i=0;i<8000;i++){
mp[now]=i;
now=now*r%p;
}
ll ap=a;
ll invnow=modpow(now,p-2,p);
for(int i=0;i<125001;i++){
if(mp.count(ap)){
e=mp[ap]+i*8000;break;
}
ap=ap*invnow%p;
}
}
//cout << r <<" " << e << endl;
//if(modpow(r,e,p)!=a)cout <<"WA"<< endl;
//x*k=e mod p-1
ll x=calc(k,e,p-1);
/*ll x=INF;
{
unordered_map<int,int> mp;
ll now=0;
for(int i=0;i<8000;i++){
mp[now]=i;
now+=k;
if(now>=p-1)now-=p-1;
}
ll ap=e%(p-1);
for(int i=0;i<125001;i++){
if(mp.count(ap)){
x=i*8000+mp[ap];
break;
}
ap-=now;
if(ap<0)ap+=p-1;
}
}
//cout << x << endl;*/
ll ans=modpow(r,x,p);
if(modpow(ans,k,p)!=a)cout << -1 << endl;
else cout << ans << endl;
}
int main(){
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
ll t;cin >> t;
while(t--){
solve();
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0