結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー nonamaenonamae
提出日時 2022-07-18 19:47:25
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 90 ms / 9,973 ms
コード長 4,860 bytes
コンパイル時間 2,154 ms
コンパイル使用メモリ 202,848 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-16 23:50:48
合計ジャッジ時間 2,992 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 49 ms
6,816 KB
testcase_05 AC 47 ms
6,816 KB
testcase_06 AC 14 ms
6,816 KB
testcase_07 AC 14 ms
6,816 KB
testcase_08 AC 14 ms
6,816 KB
testcase_09 AC 90 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using i8 = std::int8_t; using i16 = std::int16_t; using i32 = std::int32_t; using i64 = std::int64_t; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t;
using i128 = __int128_t; using u128 = __uint128_t;
using f32 = float; using f64 = double; using f80 = long double;

template<typename T> using vec = std::vector<T>;
template<typename T> using vvec = std::vector<std::vector<T>>;
template<typename T> using vvvec = std::vector<std::vector<std::vector<T>>>;

int jacobi_symbol(i64 a, u64 n) {
    u64 t;
    int j = 1;
    while (a) {
        if (a < 0) {
            a = -a;
            if ((n & 3) == 3) j = -j;
        }
        int s = __builtin_ctzll(a);
        a >>= s;
        if (((n & 7) == 3 || (n & 7) == 5) && (s & 1)) j = -j;
        if ((a & n & 3) == 3) j = -j;
        t = a, a = n, n = t;
        a %= n;
        if (u64(a) > n / 2) a -= n;
    }
    return n == 1 ? j : 0;
}

static u64 lcg_state = 14534622846793005ull;
u32 lcg_rand() {
    return lcg_state = 6364136223846793005ULL * lcg_state + 1442695040888963407ULL;
}
u32 lcg_range(u32 l, u32 r) {
    return l + lcg_rand() % (r - l + 1);
}

struct Runtime_m64 {

private:
    using m64 = u64;

public:
    inline static m64 one, r2, n, md;
    
    m64 x;

    static void set_mod(u64 m) {
        md = m;
        one = u64(-1ull) % m + 1;
        r2 = u128(i128(-1)) % m + 1;
        u64 nn = m;
        for (int _ = 0; _ < 5; ++_) nn *= 2 - nn * m;
        n = nn;
    }

    static m64 reduce(u128 a) {
        u64 y = (u64(a >> 64)) - (u64((u128(u64(a) * n) * md) >> 64));
        return i64(y) < 0 ? y + md : y;
    }

    Runtime_m64() : x(0) { }
    Runtime_m64(u64 x) : x(reduce(u128(x) * r2)) { }
    
    u64 get_val() const {
        return reduce(u128(x));
    }
    u64 get_raw() const {
        return x;
    }

    Runtime_m64 &operator+=(Runtime_m64 y) {
        x += y.x - md;
        if (i64(x) < 0) x += md;
        return *this;
    }
    Runtime_m64 &operator-=(Runtime_m64 y) {
        if (i64(x -= y.x) < 0) x += 2 * md;
        return *this;
    }
    Runtime_m64 &operator*=(Runtime_m64 y) {
        x = reduce(u128(x) * y.x);
        return *this;
    }
    Runtime_m64 &operator/=(Runtime_m64 y) {
        return *this *= y.inv();
    }
    Runtime_m64 &operator<<=(u64 y) {
        x <<= y;
        return *this;
    }
    Runtime_m64 &operator>>=(u64 y) {
        x >>= y;
        return *this;
    }
    Runtime_m64 operator+(Runtime_m64 y) const { return Runtime_m64(*this) += y; }
    Runtime_m64 operator-(Runtime_m64 y) const { return Runtime_m64(*this) -= y; }
    Runtime_m64 operator*(Runtime_m64 y) const { return Runtime_m64(*this) *= y; }
    Runtime_m64 operator/(Runtime_m64 y) const { return Runtime_m64(*this) /= y; }
    Runtime_m64 operator-() const { return Runtime_m64() - Runtime_m64(*this); }
    Runtime_m64 operator<<(u64 y) const { return Runtime_m64(*this) <<= y; }
    Runtime_m64 operator>>(u64 y) const { return Runtime_m64(*this) >>= y; }
    bool operator==(Runtime_m64 y) const { return (x >= md ? x - md : x) == (y.x >= md ? y.x - md : y.x); }
    bool operator!=(Runtime_m64 y) const { return not operator==(y); }
    bool operator<(const Runtime_m64& other) {
        return (*this).get_val() < other.get_val();
    }
    bool operator<=(const Runtime_m64& other) {
        return (*this).get_val() <= other.get_val();
    }
    bool operator>(const Runtime_m64& other) {
        return (*this).get_val() > other.get_val();
    }
    bool operator>=(const Runtime_m64& other) {
        return (*this).get_val() >= other.get_val();
    }
    Runtime_m64 pow(u64 k) {
        Runtime_m64 y = 1, z = *this;
        for ( ; k; k >>= 1, z *= z) if (k & 1) y *= z;
        return y;
    }
    Runtime_m64 inv() {
        return (*this).pow(md - 2);
    }
};

int solovay_strassen_primality_test(u64 n) {
    if (n <= 1) return 0;
    if (n <= 3) return 1;
    if (!(n & 1)) return 0;
    Runtime_m64::set_mod(n);
    Runtime_m64 a{1};
    Runtime_m64 b{n - 1};
    for (int _ = 0; _ < 15; ++_) {
        u32 ra = lcg_range(2u, ((n - 1) > ((1ull << 32) - 1)) ? 1u << 31 : n - 1);
        int x = jacobi_symbol(i64(ra), n);
        Runtime_m64 y = (x == -1) ? b : ((x == 0) ? Runtime_m64{0} : a);
        Runtime_m64 A{ra};
        if (y == 0 || y != A.pow((n - 1) / 2)) return 0;
    }
    return 1;
}


void Main() {
    // your source here
    u64 Q; scanf("%lu", &Q);
    while (Q--) {
        u64 x; scanf("%lu", &x);
        printf("%lu %d\n", x, solovay_strassen_primality_test(x));
    }
    return;
}

int main() {
    
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    std::cout << std::fixed << std::setprecision(13);
    std::cerr << std::fixed << std::setprecision(3);

    Main();
}
0