結果
問題 | No.8030 ミラー・ラビン素数判定法のテスト |
ユーザー | nonamae |
提出日時 | 2022-07-19 16:40:59 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,320 bytes |
コンパイル時間 | 3,429 ms |
コンパイル使用メモリ | 219,836 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-01 19:51:53 |
合計ジャッジ時間 | 4,226 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
ソースコード
#pragma region opt#pragma GCC target("avx2")#pragma GCC optimize("O3")#pragma endregion opt#include <bits/stdc++.h>#pragma region typeusing i8 = std::int8_t; using i16 = std::int16_t; using i32 = std::int32_t; using i64 = std::int64_t; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t;using i128 = __int128_t; using u128 = __uint128_t;using f32 = float; using f64 = double; using f80 = long double;template<typename T> using vec = std::vector<T>;template<typename T> using vvec = std::vector<std::vector<T>>;template<typename T> using vvvec = std::vector<std::vector<std::vector<T>>>;template<typename T> using pvec = std::pair<std::vector<T>, std::vector<T>>;#pragma endregion type#pragma region MACRO for#define FOR(i,a,b) for(int i=(a), i##_len=(b); i<i##_len; ++i)#define REP(i,n) for(int i=0, i##_len=(n); i<i##_len; ++i)#define LOOP(n) for(int _=0; _<(n); ++_)#pragma endregion MACRO for#pragma region MACRO container#define ALL(obj) (obj).begin(),(obj).end()#define SZ(obj) (static_cast<int>((obj).size()))#pragma endregion MACRO container#pragma region MACRO bits#define POPCNT32(a) __builtin_popcount((a))#define POPCNT64(a) __builtin_popcountll((a))#define CTZ32(a) __builtin_ctz((a))#define CLZ32(a) __builtin_clz((a))#define CTZ64(a) __builtin_ctzll((a))#define CLZ64(a) __builtin_clzll((a))#define HAS_SINGLE_BIT32(a) (__builtin_popcount((a)) == (1))#define HAS_SINGLE_BIT64(a) (__builtin_popcountll((a)) == (1))#define MSB32(a) ((31) - __builtin_clz((a)))#define MSB64(a) ((63) - __builtin_clzll((a)))#define BIT_WIDTH32(a) ((a) ? ((32) - __builtin_clz((a))) : (0))#define BIT_WIDTH64(a) ((a) ? ((64) - __builtin_clzll((a))) : (0))#define LSBit(a) ((a) & (-(a)))#define CLSBit(a) ((a) & ((a) - (1)))#define BIT_CEIL32(a) ((!(a)) ? (1) : ((POPCNT32(a)) == (1) ? ((1u) << ((31) - CLZ32((a)))) : ((1u) << ((32) - CLZ32(a)))))#define BIT_CEIL64(a) ((!(a)) ? (1) : ((POPCNT64(a)) == (1) ? ((1ull) << ((63) - CLZ64((a)))) : ((1ull) << ((64) - CLZ64(a)))))#define BIT_FLOOR32(a) ((!(a)) ? (0) : ((1u) << ((31) - CLZ32((a)))))#define BIT_FLOOR64(a) ((!(a)) ? (0) : ((1ull) << ((63) - CLZ64((a)))))#define _ROTL32(x, s) (((x) << ((s) % (32))) | (((x) >> ((32) - ((s) % (32))))))#define _ROTR32(x, s) (((x) >> ((s) % (32))) | (((x) << ((32) - ((s) % (32))))))#define ROTL32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTR32((x), -(s))) : (_ROTL32((x), (s)))))#define ROTR32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTL32((x), -(s))) : (_ROTR32((x), (s)))))#define _ROTL64(x, s) (((x) << ((s) % (64))) | (((x) >> ((64) - ((s) % (64))))))#define _ROTR64(x, s) (((x) >> ((s) % (64))) | (((x) << ((64) - ((s) % (64))))))#define ROTL64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTR64((x), -(s))) : (_ROTL64((x), (s)))))#define ROTR64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTL64((x), -(s))) : (_ROTR64((x), (s)))))#pragma endregion MACRO bits#pragma region utiltemplate<class T> inline bool chmax(T& a,T b){ if (a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T& a,T b){ if (a > b) { a = b; return 1; } return 0; }#pragma endregion util#pragma region IO// -2147483648 ~ 2147483647 (> 10 ^ 9)i32 in_i32(void) {i32 c, x = 0, f = 1;while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;while (47 < c && c < 58) {x = x * 10 + c - 48;c = getchar_unlocked();}return f * x;}static inline void out_i32_inner(i32 x) {if (x >= 10) out_i32_inner(x / 10);putchar_unlocked(x - x / 10 * 10 + 48);}void out_i32(i32 x) {if (x < 0) {putchar_unlocked('-');x = -x;}out_i32_inner(x);}// -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18)i64 in_i64(void) {i64 c, x = 0, f = 1;while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;while (47 < c && c < 58) {x = x * 10 + c - 48;c = getchar_unlocked();}return f * x;}static inline void out_i64_inner(i64 x) {if (x >= 10) out_i64_inner(x / 10);putchar_unlocked(x - x / 10 * 10 + 48);}void out_i64(i64 x) {if (x < 0) {putchar_unlocked('-');x = -x;}out_i64_inner(x);}// 0 ~ 4294967295 (> 10 ^ 9)u32 in_u32(void) {u32 c, x = 0;while (c = getchar_unlocked(), c < 48 || c > 57);while (47 < c && c < 58) {x = x * 10 + c - 48;c = getchar_unlocked();}return x;}void out_u32(u32 x) {if (x >= 10) out_u32(x / 10);putchar_unlocked(x - x / 10 * 10 + 48);}// 0 ~ 18446744073709551615 (> 10 ^ 19)u64 in_u64(void) {u64 c, x = 0;while (c = getchar_unlocked(), c < 48 || c > 57);while (47 < c && c < 58) {x = x * 10 + c - 48;c = getchar_unlocked();}return x;}void out_u64(u64 x) {if (x >= 10) out_u64(x / 10);putchar_unlocked(x - x / 10 * 10 + 48);}void NL(void) { putchar_unlocked('\n'); }void SP(void) { putchar_unlocked(' '); }#pragma endregion IO#pragma region jacobiint jacobi_symbol(i64 a, u64 n) {u64 t;int j = 1;while (a) {if (a < 0) {a = -a;if ((n & 3) == 3) j = -j;}int s = __builtin_ctzll(a);a >>= s;if (((n & 7) == 3 || (n & 7) == 5) && (s & 1)) j = -j;if ((a & n & 3) == 3) j = -j;t = a, a = n, n = t;a %= n;if (u64(a) > n / 2) a -= n;}return n == 1 ? j : 0;}#pragma endregion jacobi#pragma region m64struct Runtime_m64 {private:using m64 = u64;public:inline static m64 one, r2, n, md;m64 x;static void set_mod(u64 m) {md = m;one = u64(-1ull) % m + 1;r2 = u128(i128(-1)) % m + 1;u64 nn = m;for (int _ = 0; _ < 5; ++_) nn *= 2 - nn * m;n = nn;}static m64 reduce(u128 a) {u64 y = (u64(a >> 64)) - (u64((u128(u64(a) * n) * md) >> 64));return i64(y) < 0 ? y + md : y;}Runtime_m64() : x(0) { }Runtime_m64(u64 x) : x(reduce(u128(x) * r2)) { }Runtime_m64(u64 x, bool is_montgomery) : x(is_montgomery ? x : reduce(u128(x) * r2)) { }u64 get_val() const {return reduce(u128(x));}u64 get_raw() const {return x;}Runtime_m64 &operator+=(Runtime_m64 y) {x += y.x - md;if (i64(x) < 0) x += md;return *this;}Runtime_m64 &operator-=(Runtime_m64 y) {if (i64(x -= y.x) < 0) x += 2 * md;return *this;}Runtime_m64 &operator*=(Runtime_m64 y) {x = reduce(u128(x) * y.x);return *this;}Runtime_m64 &operator/=(Runtime_m64 y) {return *this *= y.inv();}Runtime_m64 &operator<<=(u64 y) {x <<= y;return *this;}Runtime_m64 &operator>>=(u64 y) {x >>= y;return *this;}Runtime_m64 operator+(Runtime_m64 y) const { return Runtime_m64(*this) += y; }Runtime_m64 operator-(Runtime_m64 y) const { return Runtime_m64(*this) -= y; }Runtime_m64 operator*(Runtime_m64 y) const { return Runtime_m64(*this) *= y; }Runtime_m64 operator/(Runtime_m64 y) const { return Runtime_m64(*this) /= y; }Runtime_m64 operator-() const { return Runtime_m64() - Runtime_m64(*this); }Runtime_m64 operator<<(u64 y) const { return Runtime_m64(*this) <<= y; }Runtime_m64 operator>>(u64 y) const { return Runtime_m64(*this) >>= y; }bool operator==(Runtime_m64 y) const { return (x >= md ? x - md : x) == (y.x >= md ? y.x - md : y.x); }bool operator!=(Runtime_m64 y) const { return not operator==(y); }bool operator<(const Runtime_m64& other) {return (*this).get_val() < other.get_val();}bool operator<=(const Runtime_m64& other) {return (*this).get_val() <= other.get_val();}bool operator>(const Runtime_m64& other) {return (*this).get_val() > other.get_val();}bool operator>=(const Runtime_m64& other) {return (*this).get_val() >= other.get_val();}Runtime_m64 pow(u64 k) {Runtime_m64 y = 1, z = *this;for ( ; k; k >>= 1, z *= z) if (k & 1) y *= z;return y;}Runtime_m64 inv() {return (*this).pow(md - 2);}};#pragma endregion m64#pragma region Baillie_PSW primality testbool is_prime(u64 n) {{if (n == 2 || n == 3 || n == 5 || n == 7) return true;if (n % 2 == 0 || n % 3 == 0 || n % 5 == 0 || n % 7 == 0) return false;if (n < 121) return n > 1;}using mint = Runtime_m64;mint::set_mod(n);mint one(1);{u64 d = (n - 1) << __builtin_clzll(n - 1);mint a = one << 1;if (a.get_raw() >= n) {mint aa(a.get_raw() - n, true);a = aa;}for (d <<= 1; d; d <<= 1) {a *= a;if (d >> 63) {a <<= 1;if (a.get_raw() >= n) {mint aa(a.get_raw() - n, true);a = aa;}}}if (a != one) {u64 x = (n - 1) & -(n - 1);mint m = mint(n - one.get_raw(), true);for (x >>= 1; a != m; x >>= 1) {if (x == 0) return false;a *= a;}}}{i64 D = 5;for (int i = 0; jacobi_symbol(D, n) != -1 && i < 64; i++) {if (i == 32) {u32 k = round(sqrtl(n));if (k * k == n) return false;}if (i & 1) D -= 2;else D += 2;D = -D;}mint Q(D < 0 ? (1 - D) / 4 % n : n - (D - 1) / 4 % n);mint u(1);mint v(1);mint Qn = Q;D %= (i64)n;mint D_mint(D < 0 ? n + D : D);u64 k = (n + 1) << __builtin_clzll(n + 1);for (k <<= 1; k; k <<= 1) {u *= v;v = v * v - (Qn + Qn);Qn *= Qn;if (k >> 63) {u64 uu = u.get_raw() + v.get_raw();uu = (uu >= n) ? uu - n : uu;if (uu & 1) uu += n;uu >>= 1;v += D_mint * u;if (v.get_raw() & 1) {mint vv(v.get_raw() + n, true);v = vv;}v >>= 1;u = mint(uu);Qn *= Q;}}if (u.get_raw() == 0 || v.get_raw() == 0) return true;u64 x = (n + 1) & ~n;for (x >>= 1; x; x >>= 1) {u *= v;v = v * v - (Qn + Qn);if (v.get_raw() == 0) return true;Qn *= Qn;}}return false;}#pragma endregion Baillie_PSW primality testvoid Main() {// your source herei32 n = in_i32();while (n--) {u64 x = in_u64();out_u64(x); SP(); out_u64(is_prime(x) ? 1 : 0);NL();}return;}int main() {std::ios_base::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);std::cout << std::fixed << std::setprecision(13);std::cerr << std::fixed << std::setprecision(3);Main();}