結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2022-07-19 16:55:57 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 20 ms / 9,973 ms |
| コード長 | 4,186 bytes |
| コンパイル時間 | 492 ms |
| コンパイル使用メモリ | 53,816 KB |
| 最終ジャッジ日時 | 2025-01-30 11:07:50 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:173:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
173 | int T; scanf("%d", &T);
| ~~~~~^~~~~~~~~~
main.cpp:176:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
176 | scanf("%llu", &x);
| ~~~~~^~~~~~~~~~~~
ソースコード
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#pragma region type
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
#pragma endregion type
#pragma region jacobi
int jacobi(i64 a, u64 n) {
u64 t;
int j = 1;
while (a) {
if (a < 0) {
a = -a;
if ((n & 3) == 3) j = -j;
}
int ba = __builtin_ctzll(a);
a >>= ba;
if (((n & 7) == 3 || (n & 7) == 5) && (ba & 1)) j = -j;
if ((a & n & 3) == 3) j = -j;
t = a, a = n, n = t, a %= n;
if (a > n / 2) a -= n;
}
return n == 1 ? j : 0;
}
#pragma endregion jacobi
#pragma region C-m64
typedef uint64_t m64;
m64 one_m64(u64 mod) {
return (u64)-1ull % mod + 1;
}
m64 r2_m64(u64 mod) {
return (u128)(i128)-1 % mod + 1;
}
m64 N_m64(u64 mod) {
m64 N = mod;
for (int i = 0; i < 5; i++) N *= 2 - N * mod;
return N;
}
m64 reduce_m64(u128 a, m64 N, u64 mod) {
u64 y = (u64)(a >> 64) - (u64)(((u128)((u64)a * N) * mod) >> 64);
return (i64)y < 0 ? y + mod : y;
}
m64 to_m64(u64 a, m64 r2, m64 N, u64 mod) {
return reduce_m64((u128)a * r2, N, mod);
}
m64 add_m64(m64 A, m64 B, u64 mod) {
return A + B >= mod ? A + B - mod: A + B;
}
m64 sub_m64(m64 A, m64 B, u64 mod) {
return A >= B ? A - B : mod + A - B;
}
m64 mul_m64(m64 A, m64 B, m64 N, u64 mod) {
return reduce_m64((u128)A * B, N, mod);
}
#pragma endregion C-m64
#pragma region C-BPSW
int is_prime(const u64 n) {
if (n <= 1) return 0;
if (n <= 3) return 1;
if (!(n & 1)) return 0;
const m64 one = one_m64(n);
const m64 r2 = r2_m64(n);
const m64 N = N_m64(n);
{
u64 d = (n - 1) << __builtin_clzll(n - 1);
m64 t = one << 1;
if (t >= n) t -= n;
for (d <<= 1; d; d <<= 1) {
t = mul_m64(t, t, N, n);
if (d >> 63) {
t <<= 1;
if (t >= n) t -= n;
}
}
if (t != one) {
u64 x = (n - 1) & -(n - 1);
m64 mone = n - one;
for (x >>= 1; t != mone; x >>= 1) {
if (x == 0) return 0;
t = mul_m64(t, t, N, n);
}
}
}
{
i64 D = 5;
for (int i = 0; jacobi(D, n) != -1 && i < 64; i++) {
if (i == 32) {
u32 k = round(sqrtl(n));
if (k * k == n) return 0;
}
if (i & 1) D -= 2;
else D += 2;
D = -D;
}
m64 Q = to_m64(D < 0 ? (1 - D) / 4 % n : n - (D - 1) / 4 % n, r2, N, n);
m64 u, v, Qn;
u64 k = (n + 1) << __builtin_clzll(n + 1);
u = one;
v = one;
Qn = Q;
D %= (i64)n;
D = to_m64(D < 0 ? n + D : D, r2, N, n);
for (k <<= 1; k; k <<= 1) {
u = mul_m64(u, v, N, n);
v = sub_m64(mul_m64(v, v, N, n), add_m64(Qn, Qn, n), n);
Qn = mul_m64(Qn, Qn, N, n);
if (k >> 63) {
u64 uu = add_m64(u, v, n);
if (uu & 1) uu += n;
uu >>= 1;
v = add_m64(mul_m64(D, u, N, n), v, n);
if (v & 1) v += n;
v >>= 1;
u = uu;
Qn = mul_m64(Qn, Q, N, n);
}
}
if (u == 0 || v == 0) return 1;
u64 x = (n + 1) & ~n;
for (x >>= 1; x; x >>= 1) {
u = mul_m64(u, v, N, n);
v = sub_m64(mul_m64(v, v, N, n), add_m64(Qn, Qn, n), n);
if (v == 0) return 1;
Qn = mul_m64(Qn, Qn, N, n);
}
}
return 0;
}
#pragma endregion C-BPSW
int main() {
int T; scanf("%d", &T);
while (T--) {
unsigned long long int x;
scanf("%llu", &x);
printf("%llu %d\n", x, is_prime(x));
}
return 0;
}
nonamae