結果

問題 No.1657 Sum is Prime (Easy Version)
ユーザー McGregorshMcGregorsh
提出日時 2022-07-24 09:17:33
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 3,587 bytes
コンパイル時間 241 ms
コンパイル使用メモリ 81,948 KB
実行使用メモリ 113,128 KB
最終ジャッジ日時 2024-07-06 02:34:52
合計ジャッジ時間 7,938 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 260 ms
112,768 KB
testcase_01 AC 258 ms
113,016 KB
testcase_02 AC 268 ms
112,964 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 252 ms
112,512 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 252 ms
112,768 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 AC 256 ms
112,896 KB
testcase_12 AC 268 ms
112,640 KB
testcase_13 AC 268 ms
112,784 KB
testcase_14 AC 267 ms
113,024 KB
testcase_15 AC 268 ms
112,784 KB
testcase_16 AC 264 ms
112,640 KB
testcase_17 AC 264 ms
112,896 KB
testcase_18 AC 265 ms
113,112 KB
testcase_19 AC 269 ms
112,640 KB
testcase_20 AC 264 ms
113,020 KB
testcase_21 AC 274 ms
113,024 KB
testcase_22 AC 254 ms
113,024 KB
testcase_23 AC 258 ms
112,640 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


###関数コピーしたか?###
def main():
   
   l, r = i_map()
   
   nums = sieve_of_eratosthenes(3 * (10 ** 6))
   
   cou = 0
   for i in range(l, r+1):
   	  if nums[i]:
   	  	  cou += 1
   	  if nums[i+(i+1)]:
   	  	  cou += 1
   print(cou)
   
if __name__ == '__main__':
    main()

0