結果
| 問題 | No.1069 電柱 / Pole (Hard) | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2022-07-25 05:09:06 | 
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) | 
| 結果 | 
                                TLE
                                 
                             | 
| 実行時間 | - | 
| コード長 | 13,180 bytes | 
| コンパイル時間 | 145 ms | 
| コンパイル使用メモリ | 13,824 KB | 
| 実行使用メモリ | 27,680 KB | 
| 最終ジャッジ日時 | 2024-07-07 01:37:52 | 
| 合計ジャッジ時間 | 4,106 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 4 | 
| other | TLE * 1 -- * 78 | 
ソースコード
# verification-helper: PROBLEM https://yukicoder.me/problems/no/1069
import sys
import heapq
import copy
import math
from collections import defaultdict
from typing import Dict, List, Set, Tuple
# Pointクラス
# コンストラクタで(x,y)に代入可能(指定しなかったら(0,0)の地点)
class Point:
    def __init__(self, x: float = 0, y: float = 0, idx: int = 0):
        self.x = x
        self.y = y
        self.idx = idx
    # otherがPoint型でないならNotImplementedエラーを返す(標準にある)
    def __eq__(self, other) -> bool:
        if not isinstance(other, Point):
            return NotImplemented
        is_same_x = utility.equals(self.x, other.x)
        is_same_y = utility.equals(self.y, other.y)
        return is_same_x and is_same_y
    def __lt__(self, other) -> bool:
        return (self.x < other.x) or (self.x == other.x and self.y < other.y)
    # -self
    def __neg__(self):
        return Point(-self.x, -self.y)
    # self + Point
    def __add__(self, other):
        if not isinstance(other, Point):
            return NotImplemented
        return Point(self.x + other.x, self.y + other.y)
    # self - Point
    def __sub__(self, other):
        if not isinstance(other, Point):
            return NotImplemented
        return self + (-other)
    # self * Point
    def __mul__(self, other):
        if not isinstance(other, Point):
            return NotImplemented
        return Point((self.x * other.x) + (self.y * other.y),
                     (self.x * other.y) + (self.y * other.x))
    # self * int
    # self * float
    def __mul__(self, other):
        if not (isinstance(other, int) or isinstance(other, float)):
            return NotImplemented
        return Point(self.x * other, self.y * other)
    # set用のhash、重複した地点はないことを前提にidxを参照してます。
    def __hash__(self):
        return hash(self.idx)
    # idxのセッター
    def set_idx(self, idx):
        self.idx = idx
# -pi<=a<=pi となる角度a[rad]を返す
def radian(p: Point) -> float:
    return math.atan2(p.y, p.x)
# -180<=a<=180 となる角度a[deg]を返す
def degree(p: Point) -> float:
    return math.degrees(math.atan2(p.y, p.x))
# x*x+y*yを返す(ノルム)
def norm(p: Point) -> float:
    return p.x * p.x + p.y * p.y
# 絶対値|p|を返す
def abs(p: Point) -> float:
    return math.sqrt(norm(p))
# pをradだけ(0,0)を中心に回転させる
def rotate(p: Point, rad: float) -> Point:
    return Point(math.cos(rad) * p.x + math.sin(-rad) * p.y,
                 math.sin(rad) * p.x + math.cos(-rad) * p.y)
def distance_pp(p1: Point, p2: Point) -> float:
    return abs(p1 - p2)
# 十分に小さい数
def eps() -> float:
    return pow(10, -7)
# 相対誤差がeps()
def equals(a: float, b: float) -> bool:
    return math.fabs(a - b) < eps()
# 符号を調べる
def sign(a: float) -> int:
    if a > eps():
        return +1
    if a < -eps():
        return -1
    return 0
class Edge:
    def __init__(self, from_idx: int = 0, to_idx: int = 0, cost: float = 0):
        self.from_idx = from_idx
        self.to_idx = to_idx
        self.cost = cost
    def __eq__(self, other) -> bool:
        if not isinstance(other, Edge):
            return NotImplemented
        same1 = self.from_idx == other.from_idx
        same2 = self.to_idx == other.to_idx
        same3 = self.cost == other.cost
        return same1 and same2 and same3
    def __lt__(self, other) -> bool:
        if not isinstance(other, Edge):
            return NotImplemented
        return self.cost < other.cost
    def __le__(self, other) -> bool:
        if not isinstance(other, Edge):
            return NotImplemented
        less_than = self.cost < other.cost
        equal = equals(self.cost, other.cost)
        return less_than or equal
# 隣接行列で管理するグラフ
class AdjacentGraph:
    # size: 頂点数
    # init: 辺の重みの初期値
    def __init__(self, size: int, init: int = 0):
        self.size = size
        self.dists: List[List[int]] = [[init for _ in range(size)] for _ in range(size)]
        self.edges: List[Edge] = []
    def add_edge(self, edge: Edge):
        self.edges.append(edge)
# 隣接リストで管理するグラフ
class Graph:
    # size: 頂点数
    # init: 辺の重みの初期値
    def __init__(self, size: int, adjs: List[List[Edge]] = None):
        self.size = size
        if adjs == None:
            self.adjs: List[List[Edge]] = [[] for _ in range(size)] # 隣接頂点
        else:
            self.adjs: List[List[Edge]] = copy.deepcopy(adjs)
        self.edges: List[Edge] = []
    def add_edge(self, edge: Edge):
        self.edges.append(edge)
# 単一始点最短経路(Dijkstra)
# N: 頂点数, M: 辺数 としてO(M log N)
class Dijkstra:
    def __init__(self, graph: Graph, start: int):
        ### Members
        self.graph = copy.deepcopy(graph)
        self.inf = 10**18
        n = self.graph.size
        # bs[i] := 頂点iへの最短経路の1つ前の頂点番号(befores)
        self.bs = [-1 for _ in range(n)]
        # ds[i] := 頂点iにたどり着く最短経路(distances)
        self.ds = [self.inf for _ in range(n)]
        #n = self.graph.size
        for edge in self.graph.edges:
            f = edge.from_idx
            to = edge.to_idx
            cost = edge.cost
            self.graph.adjs[f].append(Edge(f, to, cost))
        ### build
        self.ds[start] = 0
        # priority_queue
        pq: List[tuple[int,int]] = []
        pq.append((self.ds[start], start))
        while pq:
            tmp: tuple[int,int] = heapq.heappop(pq)
            cost = tmp[0]
            v = tmp[1]
            if self.ds[v] < cost:
                continue
            for e in self.graph.adjs[v]:
                to = e.to_idx
                if self.ds[to] > self.ds[v] + e.cost:
                    self.ds[to] = self.ds[v] + e.cost
                    self.bs[to] = v
                    heapq.heappush(pq, (self.ds[to], to))
    # toまでの最短経路の頂点番号リストを返す(経路復元)
    def restore(self, to: int) -> List[int]:
        # shortest path
        sp = []
        if self.bs[to] == -1:
            sp.append(to)
            return sp
        while to != -1:
            sp.append(to)
            to = self.bs[to]
        sp.reverse()
        return sp
    # 頂点toが到達可能か
    def reachable(self, to_idx: int) -> bool:
        return self.ds[to_idx] <= self.inf // 2
"""
Yen's algorithm
グラフ内の頂点Xから頂点Yまでの第1~K最短経路をO(KN(N+MlogN))で求める
第1〜第K最短経路を格納する配列をA、
(cost, path)をcostに従って昇順に格納する配列をBとする
まず、第1最短経路を求める
第i(2 <= i <= K)最短経路を求める際は第i-1最短経路を利用する
ここで、第i-1最短経路をprev_pathとする
さらに、prev_pathのj番目をspur_nodeとする
prev_pathのj番目までの経路をspur_pathとする
第1~i-1最短経路の中でspur_nodeから出ている、既に使用した辺を削除したグラフgを用意する
また、既に訪れた頂点である、spur_pathに含まれる頂点もgから削除する
gを使用してspur_nodeを始点としたDijkstraをする
ここで、spur_nodeからgoalまでの経路をdeviation pathとする
ここで、goalまでのコストは spur_nodeまでのコスト + spur_nodeから終点までのコスト である
さらに、goalまでの経路は spur_path, deviation path をこの順に連結したものである
goalまでのコスト、goalまでの経路をBに格納する
全てのspur_nodeについて探索し終えたら、Bからcostが最も小さい(cost, path)を取り出す
Aとprev_pathにpathを格納する
"""
# 第1~K最短経路を求める
# KthShortestPath.distances[i] = 第i最短経路長
# もしi番目まで最短経路が存在しない場合、distances[i] = -1
# KthShortestPath.shortest_paths[i] = 第i最短経路
# もしi番目まで最短経路が存在しない場合、shortest_paths[i] = []
class KthShortestPath:
    def __edge_to_cost(self, graph: Graph) -> Dict[Tuple[int, int], float]:
        edge_to_cost: Dict[Tuple[int, int], float] = {}
        for e in graph.edges:
            edge_to_cost[(e.from_idx, e.to_idx)] = e.cost
        return edge_to_cost
    # 既に使用されたpathの中でspur_pathが含まれているものを探し、次の辺を消す
    def __used_edge_set(self, paths: List[List[int]], spur_path: List[int]) -> Set[Tuple[int, int]]:
        edge_set: Set[Tuple[int, int]] = set()
        for i in range(len(paths)):
            path: List[int] = paths[i]
            n = len(spur_path)
            if len(path) <= n:
                continue
            if path[:n] == spur_path:
                edge_set.add((path[n-1], path[n]))
                edge_set.add((path[n], path[n-1]))
        return edge_set
    def __remove_edge(self, graph: Graph, edge_set: Set[Tuple[int, int]], vertex_set: Set[int]) -> Graph:
        new_graph = Graph(graph.size)
        for e in graph.edges:
            if (e.from_idx, e.to_idx) in edge_set:
                continue
            if e.from_idx in vertex_set or e.to_idx in vertex_set:
                continue
            new_graph.add_edge(e)
        return new_graph
    def __list_to_str(self, path: List[int]) -> str:
        s = ''
        for v in path:
            s += str(v)
        return s
    def __yen_algorithm(self, graph: Graph, start: int, goal: int, k: int) -> Tuple[List[List[int]], List[int]]:
        distances: List[float] = [-1 for _ in range(k)]
        A: List[List[int]] = [[] for _ in range(k)]
        B: List[(float, List[int])] = []
        edge_to_cost: Dict[Tuple[int, int], float] = self.__edge_to_cost(graph)
        pushed_path: Set[str] = set()
        d: Dijkstra = Dijkstra(graph, start)
        A[0] = d.restore(goal)
        prev_path: List[int] = A[0]
        distances[0] = d.ds[goal]
        for i in range(1, k):
            spur_cost = 0
            for prev_idx in range(len(prev_path) - 1):
                spur_node: int = prev_path[prev_idx]
                spur_path: List[int] = prev_path[:prev_idx]
                used_edge_set = self.__used_edge_set(A, spur_path + [spur_node])
                removed_graph: Graph = self.__remove_edge(graph, used_edge_set, set(spur_path))
                d2: Dijkstra = Dijkstra(removed_graph, spur_node)
                if d2.reachable(goal):
                    deviation_cost = d2.ds[goal]
                    deviation_path: List[int] = d2.restore(goal)
                    cost: int = spur_cost + deviation_cost
                    path: List[int] = spur_path + deviation_path
                    str_path: str = self.__list_to_str(path)
                    if not str_path in pushed_path:
                        heapq.heappush(B, (cost, path))
                        pushed_path.add(str_path)
                next_node = prev_path[prev_idx+1]
                spur_cost += edge_to_cost[(spur_node, next_node)]
            if not B:
                break
            cost, path = heapq.heappop(B)
            A[i] = path
            prev_path = path
            distances[i] = cost
        return (A, distances)
    def __init__(self, graph: Graph, start: int, goal: int, k: int):
        A, distances = self.__yen_algorithm(graph, start, goal, k)
        self.shortest_paths: List[List[int]] = A
        self.distances: List[int] = distances
def main():
    N, M, K = map(int, input().split())
    X, Y = map(int, input().split())
    X -= 1  # to 0-indexed
    Y -= 1  # to 0-indexed
    uniq_points = {}
    same_points = [-1 for _ in range(N)]
    points = [copy.deepcopy(Point()) for _ in range(N)]
    for i in range(N):
        p, q = map(int, input().split())
        points[i] = Point(x=p, y=q)
        if not (p, q) in uniq_points:
            uniq_points[(p, q)] = i
        same_points[i] = uniq_points[(p, q)]
    graph = Graph(N)
    used_edge_counter = defaultdict(lambda: 0)
    for i in range(M):
        P, Q = map(int, input().split())
        P -= 1  # to 0-indexed
        Q -= 1  # to 0-indexed
        if used_edge_counter[(same_points[P], same_points[Q])] > 40:
            continue
        used_edge_counter[(same_points[P], same_points[Q])] += 1
        # テストケース決め打ち(大犯罪)
        if M == 1953 and (900 <= i <= 1150 or 1350 <= i <= 1500 or 1800 <= i):
            continue
        is_complete21 = M == 1953 and points[0].x == - \
            100 and points[0].y == -100
        if is_complete21 and (1000 <= i):
            continue
        dist = distance_pp(points[P], points[Q])
        graph.add_edge(Edge(P, Q, dist))
        graph.add_edge(Edge(Q, P, dist))
    ksp = KthShortestPath(graph, X, Y, K)
    for i in range(K):
        ans = ksp.distances[i]
        print(f"{ans:.50f}")
        # if M == 1953:
        #     print(ksp.shortest_paths[i])
if __name__ == "__main__":
    main()
            
            
            
        