結果

問題 No.1723 [Cherry 3rd Tune *] Dead on
ユーザー McGregorshMcGregorsh
提出日時 2022-07-25 23:03:49
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 165 ms / 2,000 ms
コード長 4,299 bytes
コンパイル時間 241 ms
コンパイル使用メモリ 81,976 KB
実行使用メモリ 89,684 KB
最終ジャッジ日時 2024-07-08 01:51:22
合計ジャッジ時間 9,438 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 155 ms
88,676 KB
testcase_01 AC 152 ms
89,160 KB
testcase_02 AC 150 ms
88,728 KB
testcase_03 AC 152 ms
89,476 KB
testcase_04 AC 157 ms
89,000 KB
testcase_05 AC 154 ms
89,336 KB
testcase_06 AC 151 ms
89,436 KB
testcase_07 AC 150 ms
89,236 KB
testcase_08 AC 155 ms
89,128 KB
testcase_09 AC 152 ms
89,132 KB
testcase_10 AC 154 ms
89,384 KB
testcase_11 AC 149 ms
89,428 KB
testcase_12 AC 151 ms
89,180 KB
testcase_13 AC 152 ms
89,684 KB
testcase_14 AC 152 ms
89,020 KB
testcase_15 AC 162 ms
89,100 KB
testcase_16 AC 155 ms
89,212 KB
testcase_17 AC 163 ms
88,980 KB
testcase_18 AC 156 ms
89,360 KB
testcase_19 AC 156 ms
89,196 KB
testcase_20 AC 153 ms
89,616 KB
testcase_21 AC 157 ms
88,852 KB
testcase_22 AC 151 ms
89,400 KB
testcase_23 AC 151 ms
89,240 KB
testcase_24 AC 151 ms
89,536 KB
testcase_25 AC 155 ms
89,168 KB
testcase_26 AC 154 ms
89,148 KB
testcase_27 AC 154 ms
89,500 KB
testcase_28 AC 157 ms
89,112 KB
testcase_29 AC 159 ms
89,596 KB
testcase_30 AC 160 ms
89,304 KB
testcase_31 AC 156 ms
89,304 KB
testcase_32 AC 159 ms
89,344 KB
testcase_33 AC 149 ms
89,404 KB
testcase_34 AC 148 ms
89,248 KB
testcase_35 AC 149 ms
88,896 KB
testcase_36 AC 165 ms
89,400 KB
testcase_37 AC 151 ms
89,072 KB
testcase_38 AC 151 ms
89,348 KB
testcase_39 AC 152 ms
89,372 KB
testcase_40 AC 152 ms
89,292 KB
testcase_41 AC 151 ms
88,856 KB
testcase_42 AC 151 ms
88,848 KB
testcase_43 AC 152 ms
89,220 KB
testcase_44 AC 152 ms
89,004 KB
testcase_45 AC 152 ms
88,876 KB
testcase_46 AC 151 ms
89,236 KB
testcase_47 AC 147 ms
88,928 KB
testcase_48 AC 149 ms
89,392 KB
testcase_49 AC 151 ms
89,560 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###ある数が素数かどうかの判定###

def is_prime(n):
    if n < 2:
        return False
    i = 2
    while i * i <= n:
        if n % i == 0:
            return False
        i += 1
    return True
    

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


###関数コピーしたか?###
def main():
   
   x, a, y, b = i_map()
   
   num_a = prime_factorize(x)
   num_b = prime_factorize(y)
   
   count_a = Counter(num_a)
   count_b = Counter(num_b)
   
   juge = True
   for key, value in count_b.items():
   	  score = value * b
   	  if count_a[key] * a < score:
   	  	  juge = False
   	  	  break
   
   if juge:
   	  print('Yes')
   else:
   	  print('No')
   
if __name__ == '__main__':
    main()

0