結果
| 問題 |
No.860 買い物
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-07-30 12:13:49 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 13,899 bytes |
| コンパイル時間 | 104 ms |
| コンパイル使用メモリ | 13,824 KB |
| 実行使用メモリ | 56,640 KB |
| 最終ジャッジ日時 | 2024-07-20 08:41:02 |
| 合計ジャッジ時間 | 3,985 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 TLE * 1 -- * 10 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]: return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a = self._find_bucket(x)
i = bisect_left(a, x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x: return False
a.pop(i)
self.size -= 1
if len(a) == 0: self._build()
return True
def lt(self, x: T) -> Union[T, None]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Union[T, None]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Union[T, None]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Union[T, None]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0: x += self.size
if x < 0: raise IndexError
for a in self.a:
if x < len(a): return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
import sys
input = sys.stdin.buffer.readline
sys.setrecursionlimit(10 ** 7)
class SegTree(object):
def __init__(self, N, op_data, u_data):
self._n = N
self.log = (N-1).bit_length()
self.size = 1 << self.log
self.op = op_data
self.e = u_data
self.data = [u_data] * (2 * self.size)
# self.len = [1] * (2 * self.size)
def _update(self, i):
self.data[i] = self.op(self.data[i << 1], self.data[i << 1 | 1])
def initialize(self, arr=None):
""" segtreeをarrで初期化する。len(arr) == Nにすること """
if arr:
for i, a in enumerate(arr, self.size):
self.data[i] = a
for i in reversed(range(1, self.size)):
self._update(i)
# self.len[i] = self.len[i << 1] + self.len[i << 1 | 1]
def update(self, p, x):
""" data[p] = x とする (0-indexed)"""
p += self.size
self.data[p] = x
for i in range(1, self.log + 1):
self._update(p >> i)
def get(self, p):
""" data[p]を返す """
return self.data[p + self.size]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1])を返す (0-indexed)
"""
sml = self.e
smr = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
""" op(data[0], data[1], ... data[N-1])を返す """
return self.data[1]
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = Falseとなる r を返す
"""
if l == self._n:
return self._n
l += self.size
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[l])):
while l < self.size:
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = Falseとなる l を返す
"""
if r == 0:
return 0
r += self.size
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
class LazySegTree(SegTree):
def __init__(self, N, op_data, u_data, op_lazy, u_lazy, op_merge):
super().__init__(N, op_data, u_data)
self.composition = op_lazy
self.mapping = op_merge
self.id = u_lazy
self.lazy = [u_lazy] * self.size
def _all_apply(self, i, F):
# self.data[i] = self.mapping(F, self.data[i], self.len[i])
self.data[i] = self.mapping(F, self.data[i])
if i < self.size:
self.lazy[i] = self.composition(F, self.lazy[i])
def _push(self, i):
self._all_apply(i << 1, self.lazy[i])
self._all_apply(i << 1 | 1, self.lazy[i])
self.lazy[i] = self.id
def update(self, p, x):
""" data[p] = x とする (0-indexed)"""
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
self._update(p >> i)
def apply(self, p, F):
""" data[p]にFを作用させる(data[p] = op_merge(F, data[p])とする, 0-indexed) """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
# self.data[p] = self.mapping(F, self.data[p], self.len[p])
self.data[p] = self.mapping(F, self.data[p])
for i in range(1, self.log + 1):
self._update(p >> i)
def range_apply(self, l, r, F):
""" i = l, l+1, ..., r-1 について、Fを作用させる(op_merge(F, data[i]), 0-indexed) """
if l == r:
return
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)): # too->down
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
self._all_apply(l, F)
l += 1
if r & 1:
r -= 1
self._all_apply(r, F)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
self._update(l >> i)
if ((r >> i) << i) != r:
self._update((r - 1) >> i)
def get(self, p):
""" data[p]を返す """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
return self.data[p]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1])を返す (0-indexed)
l == rの時は単位元u_dataを返す
"""
if l == r:
return self.e
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)):
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push(r >> i)
sml = self.e
smr = self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = Falseとなる r を返す
"""
if l == self._n:
return self._n
l += self.size
for i in reversed(range(1, self.log + 1)):
self._push(l >> i)
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[[l]])):
while l < self.size:
self._push(l)
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = Falseとなる l を返す
"""
if r == 0:
return 0
r += self.size
for i in reversed(range(1, self.log + 1)):
self._push((r - 1) >> i)
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
self._push(r)
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
"""
遅延セグ木(ac-library移植)
op_data(d_L, d_R) : d_Lとd_Rの二項演算, dataを返す
op_lazy(lz_new, lz_orig) : lz_origにlz_newを作用させる, lazyを返す
op_merge(lz, d) : dにlzを作用させる, dataを返す
"""
import heapq
n = int(input())
cd = [[int(i) for i in input().split()] for j in range(n)]
st = SortedSet()
st.add(0)
st.add(n)
wdt = n
dp = []
konp = []
ans = 0
for i in range(n):
dp.append(cd[i][0])
if i != 0:
konp.append([-cd[i][1],i])
ans += cd[i][0]+cd[i][1]
ans -= cd[0][1]
heapq.heapify(konp)
bv = 10**10
u_data = 0
op_data = max
segmax = SegTree(wdt, op_data, u_data)
segmax.initialize(dp)
u_data = bv
op_data = min
segmin = SegTree(wdt, op_data, u_data)
segmin.initialize(dp)
tmp = segmin.prod(0,n)
idx = segmin.max_right(0,lambda x: x > tmp)
ans += tmp
segmin.update(idx,bv)
segmax.update(idx,bv)
for i in range(n-1):
kp,i = heapq.heappop(konp)
kp *= -1
bigidx = st.gt(i)
smlidx = st.lt(i)
if bv != segmax.prod(i,bigidx):
tmp = segmin.prod(i,bigidx)
segidx = segmin.max_right(i,lambda x: x > tmp)
else:
tmp = segmin.prod(smlidx,i)
segidx = segmin.max_right(smlidx,lambda x: x > tmp)
if tmp < kp:
st.add(i)
segmax.update(segidx,bv)
segmin.update(segidx,bv)
ans -= (kp-tmp)
print(ans)