結果
問題 | No.5007 Steiner Space Travel |
ユーザー |
|
提出日時 | 2022-07-30 14:34:08 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 3 ms / 1,000 ms |
コード長 | 20,442 bytes |
コンパイル時間 | 919 ms |
実行使用メモリ | 6,952 KB |
スコア | 1,221,702 |
最終ジャッジ日時 | 2022-07-30 14:34:11 |
合計ジャッジ時間 | 2,696 ms |
ジャッジサーバーID (参考情報) |
judge15 / judge11 |
純コード判定しない問題か言語 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 30 |
コンパイルメッセージ
warning: unused variable: `timer` --> Main.rs:57:9 | 57 | let timer = Timer::new(); | ^^^^^ help: if this is intentional, prefix it with an underscore: `_timer` | = note: `#[warn(unused_variables)]` on by default warning: unused variable: `rng` --> Main.rs:58:13 | 58 | let mut rng = Xorshift::new(); | ^^^ help: if this is intentional, prefix it with an underscore: `_rng` warning: unused variable: `input` --> Main.rs:65:14 | 65 | fn annealing(input: &Input, solution: &mut Solution, timer: &mut Timer, rng: &mut Xorshift<usize>) { | ^^^^^ help: if this is intentional, prefix it with an underscore: `_input` warning: variable does not need to be mutable --> Main.rs:56:9 | 56 | let mut input = Input::parse_input(); | ----^^^^^ | | | help: remove this `mut` | = note: `#[warn(unused_mut)]` on by default warning: variable does not need to be mutable --> Main.rs:58:9 | 58 | let mut rng = Xorshift::new(); | ----^^^ | | | help: remove this `mut` warning: variable does not need to be mutable --> Main.rs:59:9 | 59 | let mut solution = Solution::new(&input); | ----^^^^^^^^ | | | help: remove this `mut` warning: variable does not need to be mutable --> Main.rs:84:13 | 84 | let mut new_solution = solution.clone(); | ----^^^^^^^^^^^^ | | | help: remove this `mut` warning: constant is never used: `TIMELIMIT` --> Main.rs:53:1 | 53 | const TIMELIMIT: f64 = 1.0; | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | = note: `#[warn(dead_code)]` on by default warning: function is never used: `annealing` --> Main.rs:65:4 | 65 | fn annealing(input: &Input, solution: &mut Solution, timer: &mut Timer, rng: &mut Xorshift<usize>) { | ^^^^^^^^^ warning: constant is never used: `ALPHA` --> Main.rs:100:1 | 100 | const ALPHA
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {(source = $s:expr, $($r:tt)*) => {let mut iter = $s.split_whitespace();input_inner!{iter, $($r)*}};($($r:tt)*) => {let s = {use std::io::Read;let mut s = String::new();std::io::stdin().read_to_string(&mut s).unwrap();s};let mut iter = s.split_whitespace();input_inner!{iter, $($r)*}};}macro_rules! input_inner {($iter:expr) => {};($iter:expr, ) => {};($iter:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($iter, $t);input_inner!{$iter $($r)*}};}macro_rules! read_value {($iter:expr, ( $($t:tt),* )) => {( $(read_value!($iter, $t)),* )};($iter:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()};($iter:expr, chars) => {read_value!($iter, String).chars().collect::<Vec<char>>()};($iter:expr, usize1) => {read_value!($iter, usize) - 1};($iter:expr, $t:ty) => {$iter.next().unwrap().parse::<$t>().expect("Parse error")};}use ntk_rand::Xorshift;const TIMELIMIT: f64 = 1.0;fn main() {let mut input = Input::parse_input();let timer = Timer::new();let mut rng = Xorshift::new();let mut solution = Solution::new(&input);// ステーションをどこに置くか// どの順番で訪問するか 数列で訪問順を持つ?println!("{}", solution);}fn annealing(input: &Input, solution: &mut Solution, timer: &mut Timer, rng: &mut Xorshift<usize>) {const T0: f64 = 100.0;const T1: f64 = 0.00001;let mut temp = T0;let mut prob;let mut best_solution = solution.clone();let mut count = 0;loop {if count >= 100 {let passed = timer.get_time() / TIMELIMIT;if passed >= 1.0 {break;}temp = T0.powf(1.0 - passed) * T1.powf(passed);count = 0;}count += 1;let mut new_solution = solution.clone();// 近傍解作成// 近傍解作成ここまでprob = f64::exp((new_solution.score - solution.score) as f64 / temp);if solution.score < new_solution.score || rng.gen_bool(prob) {*solution = new_solution;}if best_solution.score < solution.score {best_solution = solution.clone();}}*solution = best_solution;}const ALPHA: usize = 5;#[derive(Debug, Clone)]struct Input {n: usize,m: usize,planets: Vec<Vec<i64>>,}impl Input {fn parse_input() -> Self {input! {n: usize,m: usize,planets: [[i64; 2]; n],}Input { n, m, planets }}}#[derive(Debug, Clone)]struct Solution {stations: Vec<Vec<i64>>,transits: Vec<Vec<i64>>,score: i64,}impl std::fmt::Display for Solution {fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {for station in self.stations.iter() {writeln!(f, "{} {}", station[0], station[1])?;}writeln!(f, "{}", self.transits.len())?;for transit in self.transits.iter() {writeln!(f, "{} {}", transit[0], transit[1])?;}Ok(())}}impl Solution {fn new(input: &Input) -> Self {let stations = vec![vec![0; 2]; input.m];let mut transits: Vec<Vec<i64>> = (1..=input.n).into_iter().map(|r| vec![1, r as i64]).collect();transits.push(vec![1, 1]);Solution {stations,transits,score: 0,}}fn compute_score(&mut self) {self.score = 0;}}pub fn get_time() -> f64 {let t = std::time::SystemTime::now().duration_since(std::time::UNIX_EPOCH).unwrap();t.as_secs() as f64 + t.subsec_nanos() as f64 * 1e-9}struct Timer {start_time: f64,}impl Timer {fn new() -> Timer {Timer {start_time: get_time(),}}fn get_time(&self) -> f64 {get_time() - self.start_time}}#[allow(dead_code)]mod ntk_rand {pub trait Distribution<T, TX> {/// Generate a random value of `T`, using `rng` as the source of randomness.fn sample(&self, rng: &mut Xorshift<TX>) -> T;}pub struct Xorshift<T> {seed: T,}impl Xorshift<usize> {pub fn new() -> Self {Xorshift {seed: 0x139408dcbbf7a44,}}pub fn seed_from_u64(seed: usize) -> Xorshift<usize> {Xorshift { seed }}fn gen(&mut self) -> usize {self.seed = self.seed ^ (self.seed << 13);self.seed = self.seed ^ (self.seed >> 7);self.seed = self.seed ^ (self.seed << 17);self.seed}pub fn rand(&mut self) -> usize {self.gen()}fn sample<T, D: Distribution<T, usize>>(&mut self, distr: D) -> T {distr.sample(self)}pub fn gen_bool(&mut self, p: f64) -> bool {let d = Bernoulli::new(p).unwrap();self.sample(d)}pub fn gen_range<T, R>(&mut self, range: R) -> TwhereT: SampleUniform,R: SampleRange<T>,{range.sample_single(self)}}pub struct Uniform<X: SampleUniform>(X::Sampler);impl<X: SampleUniform> Uniform<X> {pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>whereB1: SampleBorrow<X> + Sized,B2: SampleBorrow<X> + Sized,{Uniform(X::Sampler::new(low, high))}pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>whereB1: SampleBorrow<X> + Sized,B2: SampleBorrow<X> + Sized,{Uniform(X::Sampler::new_inclusive(low, high))}}impl<X: SampleUniform> Distribution<X, usize> for Uniform<X> {fn sample(&self, rng: &mut Xorshift<usize>) -> X {self.0.sample(rng)}}pub trait UniformSampler: Sized {/// The type sampled by this implementation.type X;fn new<B1, B2>(low: B1, high: B2) -> SelfwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized;fn new_inclusive<B1, B2>(low: B1, high: B2) -> SelfwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized;/// Sample a value.fn sample(&self, rng: &mut Xorshift<usize>) -> Self::X;fn sample_single<B1, B2>(low: B1, high: B2, rng: &mut Xorshift<usize>) -> Self::XwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let uniform: Self = UniformSampler::new(low, high);uniform.sample(rng)}fn sample_single_inclusive<B1, B2>(low: B1, high: B2, rng: &mut Xorshift<usize>) -> Self::XwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let uniform: Self = UniformSampler::new_inclusive(low, high);uniform.sample(rng)}}impl<X: SampleUniform> From<core::ops::Range<X>> for Uniform<X> {fn from(r: core::ops::Range<X>) -> Uniform<X> {Uniform::new(r.start, r.end)}}impl<X: SampleUniform> From<core::ops::RangeInclusive<X>> for Uniform<X> {fn from(r: core::ops::RangeInclusive<X>) -> Uniform<X> {Uniform::new_inclusive(r.start(), r.end())}}pub trait SampleUniform: Sized {/// The `UniformSampler` implementation supporting type `X`.type Sampler: UniformSampler<X = Self>;}pub trait SampleBorrow<Borrowed> {/// Immutably borrows from an owned value. See [`Borrow::borrow`]////// [`Borrow::borrow`]: std::borrow::Borrow::borrowfn borrow(&self) -> &Borrowed;}impl<Borrowed> SampleBorrow<Borrowed> for BorrowedwhereBorrowed: SampleUniform,{#[inline(always)]fn borrow(&self) -> &Borrowed {self}}impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a BorrowedwhereBorrowed: SampleUniform,{#[inline(always)]fn borrow(&self) -> &Borrowed {*self}}/// Range that supports generating a single sample efficiently.////// Any type implementing this trait can be used to specify the sampled range/// for `Rng::gen_range`.pub trait SampleRange<T> {/// Generate a sample from the given range.fn sample_single(self, rng: &mut Xorshift<usize>) -> T;/// Check whether the range is empty.fn is_empty(&self) -> bool;}impl<T: SampleUniform + PartialOrd> SampleRange<T> for core::ops::Range<T> {#[inline]fn sample_single(self, rng: &mut Xorshift<usize>) -> T {T::Sampler::sample_single(self.start, self.end, rng)}#[inline]fn is_empty(&self) -> bool {// !(self.start >= self.end)self.start < self.end}}impl<T: SampleUniform + PartialOrd> SampleRange<T> for core::ops::RangeInclusive<T> {#[inline]fn sample_single(self, rng: &mut Xorshift<usize>) -> T {T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)}#[inline]fn is_empty(&self) -> bool {// !(self.start() <= self.end())self.start() > self.end()}}pub trait WideningMultiply<RHS = Self> {type Output;fn wmul(self, x: RHS) -> Self::Output;}macro_rules! wmul_impl {($ty:ty, $wide:ty, $shift:expr) => {impl WideningMultiply for $ty {type Output = ($ty, $ty);#[inline(always)]fn wmul(self, x: $ty) -> Self::Output {let tmp = (self as $wide) * (x as $wide);((tmp >> $shift) as $ty, tmp as $ty)}}};// simd bulk implementation($(($ty:ident, $wide:ident),)+, $shift:expr) => {$(impl WideningMultiply for $ty {type Output = ($ty, $ty);#[inline(always)]fn wmul(self, x: $ty) -> Self::Output {// For supported vectors, this should compile to a couple// supported multiply & swizzle instructions (no actual// casting).// TODO: optimizelet y: $wide = self.cast();let x: $wide = x.cast();let tmp = y * x;let hi: $ty = (tmp >> $shift).cast();let lo: $ty = tmp.cast();(hi, lo)}})+};}wmul_impl! { u8, u16, 8 }wmul_impl! { u16, u32, 16 }wmul_impl! { u32, u64, 32 }wmul_impl! { u64, u128, 64 }macro_rules! wmul_impl_large {($ty:ty, $half:expr) => {impl WideningMultiply for $ty {type Output = ($ty, $ty);#[inline(always)]fn wmul(self, b: $ty) -> Self::Output {const LOWER_MASK: $ty = !0 >> $half;let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK);let mut t = low >> $half;low &= LOWER_MASK;t += (self >> $half).wrapping_mul(b & LOWER_MASK);low += (t & LOWER_MASK) << $half;let mut high = t >> $half;t = low >> $half;low &= LOWER_MASK;t += (b >> $half).wrapping_mul(self & LOWER_MASK);low += (t & LOWER_MASK) << $half;high += t >> $half;high += (self >> $half).wrapping_mul(b >> $half);(high, low)}}};// simd bulk implementation(($($ty:ty,)+) $scalar:ty, $half:expr) => {$(impl WideningMultiply for $ty {type Output = ($ty, $ty);#[inline(always)]fn wmul(self, b: $ty) -> Self::Output {// needs wrapping multiplicationconst LOWER_MASK: $scalar = !0 >> $half;let mut low = (self & LOWER_MASK) * (b & LOWER_MASK);let mut t = low >> $half;low &= LOWER_MASK;t += (self >> $half) * (b & LOWER_MASK);low += (t & LOWER_MASK) << $half;let mut high = t >> $half;t = low >> $half;low &= LOWER_MASK;t += (b >> $half) * (self & LOWER_MASK);low += (t & LOWER_MASK) << $half;high += t >> $half;high += (self >> $half) * (b >> $half);(high, low)}})+};}wmul_impl_large! { u128, 64 }macro_rules! wmul_impl_usize {($ty:ty) => {impl WideningMultiply for usize {type Output = (usize, usize);#[inline(always)]fn wmul(self, x: usize) -> Self::Output {let (high, low) = (self as $ty).wmul(x as $ty);(high as usize, low as usize)}}};}#[cfg(target_pointer_width = "16")]wmul_impl_usize! { u16 }#[cfg(target_pointer_width = "32")]wmul_impl_usize! { u32 }#[cfg(target_pointer_width = "64")]wmul_impl_usize! { u64 }pub struct UniformInt<X> {low: X,range: X,z: X,}macro_rules! uniform_int_impl {($ty:ty, $unsigned:ident, $u_large:ident) => {impl SampleUniform for $ty {type Sampler = UniformInt<$ty>;}impl UniformSampler for UniformInt<$ty> {type X = $ty;#[inline]fn new<B1, B2>(low_b: B1, high_b: B2) -> SelfwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let low = *low_b.borrow();let high = *high_b.borrow();assert!(low < high, "Uniform::new called with `low >= high`");UniformSampler::new_inclusive(low, high - 1)}#[inline]fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> SelfwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let low = *low_b.borrow();let high = *high_b.borrow();assert!(low <= high,"Uniform::new_inclusive called with `low > high`");let unsigned_max = core::$u_large::MAX;let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;let ints_to_reject = if range > 0 {let range = $u_large::from(range);(unsigned_max - range + 1) % range} else {0};UniformInt {low,range: range as $ty,z: ints_to_reject as $unsigned as $ty,}}#[inline]fn sample(&self, rng: &mut Xorshift<$u_large>) -> Self::X {let range = self.range as $unsigned as $u_large;if range > 0 {let unsigned_max = core::$u_large::MAX;let zone = unsigned_max - (self.z as $unsigned as $u_large);loop {let v: $u_large = rng.gen();let (hi, lo) = v.wmul(range);if lo <= zone {return self.low.wrapping_add(hi as $ty);}}} else {rng.gen()}}#[inline]fn sample_single<B1, B2>(low_b: B1,high_b: B2,rng: &mut Xorshift<$u_large>,) -> Self::XwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let low = *low_b.borrow();let high = *high_b.borrow();assert!(low < high, "UniformSampler::sample_single: low >= high");Self::sample_single_inclusive(low, high - 1, rng)}#[inline]fn sample_single_inclusive<B1, B2>(low_b: B1,high_b: B2,rng: &mut Xorshift<$u_large>,) -> Self::XwhereB1: SampleBorrow<Self::X> + Sized,B2: SampleBorrow<Self::X> + Sized,{let low = *low_b.borrow();let high = *high_b.borrow();assert!(low <= high,"UniformSampler::sample_single_inclusive: low > high");let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;if range == 0 {return rng.gen();}let zone = if core::$unsigned::MAX <= core::u16::MAX as $unsigned {let unsigned_max: $u_large = core::$u_large::MAX;let ints_to_reject = (unsigned_max - range + 1) % range;unsigned_max - ints_to_reject} else {(range << range.leading_zeros()).wrapping_sub(1)};loop {let v: $u_large = rng.gen();let (hi, lo) = v.wmul(range);if lo <= zone {return low.wrapping_add(hi as $ty);}}}}};}uniform_int_impl! { usize, usize, usize }pub struct Bernoulli {p_int: u64,}const ALWAYS_TRUE: u64 = u64::max_value();const SCALE: f64 = 2.0 * (1u64 << 63) as f64;#[derive(Clone, Copy, Debug, PartialEq, Eq)]pub enum BernoulliError {InvalidProbability,}impl Bernoulli {#[inline]pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {if !(0.0..1.0).contains(&p) {if p == 1.0 {return Ok(Bernoulli { p_int: ALWAYS_TRUE });}return Err(BernoulliError::InvalidProbability);}Ok(Bernoulli {p_int: (p * SCALE) as u64,})}}impl Distribution<bool, usize> for Bernoulli {#[inline]fn sample(&self, rng: &mut Xorshift<usize>) -> bool {if self.p_int == ALWAYS_TRUE {return true;}let v: u64 = rng.gen() as u64;v < self.p_int}}}