結果
| 問題 |
No.2122 黄金比で擬似乱数生成
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-08-03 02:15:59 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 23 ms / 2,000 ms |
| コード長 | 38,074 bytes |
| コンパイル時間 | 1,828 ms |
| コンパイル使用メモリ | 103,844 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-18 22:04:50 |
| 合計ジャッジ時間 | 2,302 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
コンパイルメッセージ
main.cpp: In function 'void ShuffleMemorise(MOD&, const ll&, const ll&)':
main.cpp:1211:20: warning: 'num' may be used uninitialized [-Wmaybe-uninitialized]
1211 | const ll d = ( I - num ) % period;
| ~~~~^~~~~~~
main.cpp:1191:6: note: 'num' was declared here
1191 | ll num;
| ^~~
ソースコード
#include <iostream>
#include <list>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdint.h>
using namespace std;
using ll = long long;
// 自分のライブラリ(https://github.com/p-adic/cpp)よりソースコードをコピーして編集している。
template <typename T>
using VLArray = list<T>;
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept;
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept
{
if( M == 0 ){
return 0;
}
const INT M_abs = ( M > 0 ? M : -M );
if( n < 0 ){
const INT n_abs = -n;
const INT res = n_abs % M_abs;
return res == 0 ? res : M_abs - res;
}
return n % M_abs;
}
using INT_TYPE_FOR_ADIC_INT = long long int;
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH = 0>
class AdicInt
{
private:
VLArray<INT_TYPE_FOR_ADIC_INT> m_expansion;
INT_TYPE_FOR_ADIC_INT m_n;
public:
inline AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;
inline const VLArray<INT_TYPE_FOR_ADIC_INT>& GetExpansion() const noexcept;
inline const INT_TYPE_FOR_ADIC_INT& GetValue() const noexcept;
static const VLArray<INT_TYPE_FOR_ADIC_INT>& Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;
};
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline AdicInt<P,LENGTH>::AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept : m_expansion( Expand( n ) ) , m_n( n ) {}
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::GetExpansion() const noexcept { return m_expansion; }
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const INT_TYPE_FOR_ADIC_INT& AdicInt<P,LENGTH>::GetValue() const noexcept { return m_n; }
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH>
const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept
{
static VLArray<INT_TYPE_FOR_ADIC_INT> memory_n{};
static VLArray<VLArray<INT_TYPE_FOR_ADIC_INT> > memory_answer{};
if( P == 0 ){
// ダミー
return memory_n;
}
auto itr_n = memory_n.begin() , end_n = memory_n.end();
auto itr_answer = memory_answer.begin();
while( itr_n != end_n ){
if( *itr_n == n ){
return *itr_answer;
}
itr_n++;
itr_answer++;
}
INT_TYPE_FOR_ADIC_INT n_copy = n;
VLArray<INT_TYPE_FOR_ADIC_INT> answer{};
if( LENGTH == 0 ){
for( INT_TYPE_FOR_ADIC_INT i = 0 ; n_copy != 0 ; i++ ){
const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );
answer.push_back( d );
n_copy -= d;
n_copy /= P;
}
} else {
for( INT_TYPE_FOR_ADIC_INT i = 0 ; i < LENGTH && n_copy != 0 ; i++ ){
const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );
answer.push_back( d );
n_copy -= d;
n_copy /= P;
}
}
memory_n.push_back( n );
memory_answer.push_back( answer );
return memory_answer.back();
}
// init * ( t ^ num )
template <typename T , typename UINT>
T Power( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true , const string& method = "normal" );
template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true );
template <typename T , typename UINT>
T PowerBinaryMethod( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true );
// 単なる2乗だが、T次第ではオーバーロードしてより高速なものに置き換える
template <typename T> inline T Square( const T& t );
// PowerBinaryMetodの呼び出しは部分特殊化ではなくオーバーロードで処理できるようにするためにPowerBinaryMethod<T,UINT>とはしない。
template <typename T , typename UINT>
inline T Power( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication , const string& method ) { return method == "binary" ? PowerBinaryMethod( t , num , init , for_right_multiplication ) : PowerNormalMethod( t , num , init , for_right_multiplication ); }
template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication ) { return num == 0 ? init : ( for_right_multiplication ? PowerNormalMethod( t , num - 1 , init ) * t : t * PowerNormalMethod( t , num - 1 , init ) ); }
template <typename T , typename UINT>
T PowerBinaryMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication )
{
const VLArray<UINT>& num_binary = AdicInt<2>::Expand( num );
T answer = init;
T power = t;
for( auto itr = num_binary.begin() , end = num_binary.end() ; itr != end ; itr++ ){
if( *itr == 1 ){
answer = for_right_multiplication ? answer * power : power * answer;
}
// 部分特殊化ではなくオーバーロードで処理できるようにするためにSquare<T>としない。
power = Square( power );
}
return answer;
}
template <typename T> inline T Square( const T& t ) { return t * t; }
using INT_TYPE_FOR_MOD = long long int;
// ここをtempate <typename INT , INT M>などにしてしまうとoperator+などを呼び出す際に型推論に失敗する。整数型を変えたい時はINT_TYPE_FOR_MODの型エイリアスを変更する。
template <INT_TYPE_FOR_MOD M>
class Mod
{
protected:
INT_TYPE_FOR_MOD m_n;
INT_TYPE_FOR_MOD m_inv;
public:
inline Mod() noexcept;
inline Mod( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod( const Mod<M>& n ) noexcept;
inline Mod<M>& operator=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator=( const Mod<M>& n ) noexcept;
Mod<M>& operator+=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator+=( const Mod<M>& n ) noexcept;
inline Mod<M>& operator-=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator-=( const Mod<M>& n ) noexcept;
Mod<M>& operator*=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator*=( const Mod<M>& n ) noexcept;
// INT_TYPE_FOR_MODでの割り算ではないことに注意
virtual Mod<M>& operator/=( const INT_TYPE_FOR_MOD& n );
virtual Mod<M>& operator/=( const Mod<M>& n );
Mod<M>& operator%=( const INT_TYPE_FOR_MOD& n );
inline Mod<M>& operator%=( const Mod<M>& n );
// 前置++/--を使うつもりがないので後置++/--と同じものとして定義する
inline Mod<M>& operator++() noexcept;
inline Mod<M>& operator++( int ) noexcept;
inline Mod<M>& operator--() noexcept;
inline Mod<M>& operator--( int ) noexcept;
inline const INT_TYPE_FOR_MOD& Represent() const noexcept;
void Invert() noexcept;
bool CheckInvertible() noexcept;
bool IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
bool IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
};
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> Inverse( const Mod<M>& n );
template <INT_TYPE_FOR_MOD M> Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method );
// M乗が1になるよう定義されていることに注意
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method );
// ../Power/a_Body.hppにて定義
template <typename T> inline T Square( const T& t );
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t );
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m );
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod() noexcept : m_n( 0 ) , m_inv( M ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const INT_TYPE_FOR_MOD& n ) noexcept : m_n( Residue<INT_TYPE_FOR_MOD>( M , n ) ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const Mod<M>& n ) noexcept : m_n( n.m_n ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator=( Mod<M>( n ) ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator=( const Mod<M>& n ) noexcept
{
m_n = n.m_n;
m_inv = n.m_inv;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator+=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n + n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator+=( const Mod<M>& n ) noexcept { return operator+=( n.m_n ); };
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator+=( -n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const Mod<M>& n ) noexcept { return operator-=( n.m_n ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const Mod<M>& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n.m_n );
if( m_inv == 0 || n.m_inv == 0 ){
m_inv = 0;
} else if( m_inv == M || n.m_inv == M ){
m_inv = M;
} else {
Residue<INT_TYPE_FOR_MOD>( M , m_inv * n.m_inv );
}
return *this;
}
// 仮想関数なのでinline指定しない。
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const INT_TYPE_FOR_MOD& n )
{
return operator/=( Mod<M>( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const Mod<M>& n )
{
return operator*=( Inverse( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator%=( const INT_TYPE_FOR_MOD& n )
{
m_n %= Residue<INT_TYPE_FOR_MOD>( M , n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator%=( const Mod<M>& n ) { return operator%=( n.m_n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++() noexcept { return operator+=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++( int ) noexcept { return operator++(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--() noexcept { return operator-=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--( int ) noexcept { return operator-=(); }
template <INT_TYPE_FOR_MOD M> inline const INT_TYPE_FOR_MOD& Mod<M>::Represent() const noexcept { return m_n; }
template <INT_TYPE_FOR_MOD M>
void Mod<M>::Invert() noexcept
{
if( CheckInvertible() ){
INT_TYPE_FOR_MOD i = m_inv;
m_inv = m_n;
m_n = i;
} else {
// m_nがMになるのはここの処理に限るのでRepresent()の値を参照することで例外処理可能
m_n = M;
m_inv = M;
}
return;
}
template <INT_TYPE_FOR_MOD M>
bool Mod<M>::CheckInvertible() noexcept
{
if( m_inv == 0 ){
LazyEvaluationOfModularInverse( M , m_n , m_inv );
}
return m_inv != M;
}
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n < Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n > Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 == Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 ) == n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() == n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0.IsSmallerThan( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1.IsBiggerThan( n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() < n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n += n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 + n0; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 + n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 + ( -n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 - n1.Represent() ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 - n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 * n0; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) { return n0 / Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) / n1; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 )
{
auto n = n0;
n /= n1;
return n;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 )
{
auto n = n0;
n %= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) % n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 ) { return n0 % n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> Inverse( const Mod<M>& n )
{
auto n_copy = n;
n_copy.Invert();
return n_copy;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method )
{
if( p >= 0 ){
return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p , 1 , true , true , method );
}
return Inverse( Power<M>( n , -p , method ) );
}
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method ) { return p == 0 ? 1 : n; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method ) { return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p.Represent() , method ); }
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method ) { return p == 0 ? 1 : n; }
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t ) { return t; }
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m )
{
static VLArray<INT_TYPE_FOR_MOD> memory_M{};
// vectorでなくVLArrayだと引数が小さい順に呼び出した時の計算量がO(1)からO(n)に跳ね上がってしまう。
static VLArray<vector<INT_TYPE_FOR_MOD> > memory_inverse{};
auto itr_M = memory_M.begin() , end_M = memory_M.end();
auto itr_inverse = memory_inverse.begin();
vector<INT_TYPE_FOR_MOD>* p_inverse = nullptr;
while( itr_M != end_M && p_inverse == nullptr ){
if( *itr_M == M ){
p_inverse = &( *itr_inverse );
}
itr_M++;
itr_inverse++;
}
if( p_inverse == nullptr ){
memory_M.push_front( M );
memory_inverse.push_front( vector<INT_TYPE_FOR_MOD>() );
p_inverse = &( memory_inverse.front() );
p_inverse->push_back( M );
}
const INT_TYPE_FOR_MOD size = p_inverse->size();
for( INT_TYPE_FOR_MOD i = size ; i <= n ; i++ ){
p_inverse->push_back( 0 );
}
INT_TYPE_FOR_MOD& n_inv = ( *p_inverse )[n];
if( n_inv != 0 ){
m = n_inv;
return;
}
const INT_TYPE_FOR_MOD M_abs = M >= 0 ? M : -M;
const INT_TYPE_FOR_MOD n_sub = M_abs % n;
INT_TYPE_FOR_MOD n_sub_inv = ( *p_inverse )[n_sub];
if( n_sub_inv == 0 ){
LazyEvaluationOfModularInverse( M , n_sub , n_sub_inv );
}
if( n_sub_inv != M ){
n_inv = M_abs - ( ( n_sub_inv * ( M_abs / n ) ) % M_abs );
m = n_inv;
return;
}
for( INT_TYPE_FOR_MOD i = 1 ; i < M_abs ; i++ ){
if( ( n * i ) % M_abs == 1 ){
n_inv = i;
m = n_inv;
return;
}
}
n_inv = M;
m = n_inv;
return;
}
template <typename T>
using LineTypeForMatrix = vector<T>;
template <typename T>
using TableTypeForMatrix = LineTypeForMatrix<LineTypeForMatrix<T> >;
using SizeTypeForMatrix = ll;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
class Matrix
{
private:
TableTypeForMatrix<T> m_M;
public:
// argsの長さがXYでなくてもコンパイルエラーとならないがサポート外である。
template <typename... Args> Matrix( const Args&... args ) noexcept;
inline Matrix( const Matrix<Y,X,T>& mat ) noexcept;
// ( X , Y )行列でないものも引数に取れるがサポート外である。
template <typename... Args> inline Matrix( const TableTypeForMatrix<T>& M ) noexcept;
Matrix<Y,X,T>& operator=( const Matrix<Y,X,T>& mat ) noexcept;
Matrix<Y,X,T>& operator+=( const Matrix<Y,X,T>& mat );
Matrix<Y,X,T>& operator-=( const Matrix<Y,X,T>& mat );
Matrix<Y,X,T>& operator*=( const T& scalar ) noexcept;
// 行や列の長さを変更可能だがサポート外である。
inline TableTypeForMatrix<T>& RefTable() noexcept;
inline const TableTypeForMatrix<T>& GetTable() const noexcept;
static inline const Matrix<Y,X,T>& Unit() noexcept;
private:
static inline void ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec ) noexcept;
template <typename Arg , typename... Args> static void ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec , const Arg& arg , const Args&... args ) noexcept;
static Matrix<Y,X,T> Unit_Body() noexcept;
};
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator==( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator!=( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator+( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator-( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , SizeTypeForMatrix Z , typename T>
Matrix<Y,Z,T> operator*( const Matrix<Y,X,T>& mat1 , const Matrix<X,Z,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator*( const T& scalar , const Matrix<Y,X,T>& mat );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<X,Y,T> Transpose( const Matrix<Y,X,T>& mat );
template <SizeTypeForMatrix X , typename T>
T Trace( const Matrix<X,X,T>& mat );
// ../Arithmetic/Power/a_Body.hppにて定義
// template <typename T , typename UINT>
// T PowerBinaryMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication );
template <typename T , typename UINT>
Matrix<2,2,T> PowerBinaryMethod( const Matrix<2,2,T>& mat , const UINT& num , const Matrix<2,2,T>& init_dummy , const bool& for_right_multiplication_dummy );
template <typename T>
class TwoByTwoMatrix
{
private:
T m_M00;
T m_M01;
T m_M10;
T m_M11;
public:
inline TwoByTwoMatrix( const T& M00 , const T& M01 , const T& M10 , const T& M11 ) noexcept;
TwoByTwoMatrix( const Matrix<2,2,T>& mat );
TwoByTwoMatrix<T>& operator=( const TwoByTwoMatrix<T>& mat ) noexcept;
inline Matrix<2,2,T> GetMatrix22() const noexcept;
static inline TwoByTwoMatrix<T> Multiply( const TwoByTwoMatrix<T>& mat1 , const TwoByTwoMatrix<T>& mat2 );
static inline TwoByTwoMatrix<T> Square( const TwoByTwoMatrix<T>& mat );
};
template <typename T> inline TwoByTwoMatrix<T> operator*( const TwoByTwoMatrix<T>& mat1 , const TwoByTwoMatrix<T>& mat2 );
// ../../Arithmetic/Power/a_Body.hppにて定義
// template <typename T> inline T Square( const T& t );
template <typename T> inline TwoByTwoMatrix<T> Square( const TwoByTwoMatrix<T>& mat );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename... Args>
Matrix<Y,X,T>::Matrix( const Args&... args ) noexcept
: m_M()
{
TableTypeForMatrix<T> M{};
LineTypeForMatrix<T> vec{};
ConstructTable( M , vec , args... );
m_M = M;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T>::Matrix( const Matrix<Y,X,T>& mat ) noexcept : m_M( mat.m_M ) {}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename... Args> inline Matrix<Y,X,T>::Matrix( const TableTypeForMatrix<T>& M ) noexcept : m_M( M ) {}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator=( const Matrix<Y,X,T>& mat ) noexcept
{
m_M = mat.m_M;
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator+=( const Matrix<Y,X,T>& mat )
{
auto itr1y = m_M.begin() , end1y = m_M.end();
auto itr2y = mat.m_M.begin();
while( itr1y != end1y ){
auto itr1xy = itr1y->begin() , end1xy = itr1y->end();
auto itr2xy = itr2y->begin();
while( itr1xy != end1xy ){
*itr1xy += *itr2xy;
itr1xy++;
itr2xy++;
}
itr1y++;
itr2y++;
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator-=( const Matrix<Y,X,T>& mat )
{
auto itr1y = m_M.begin() , end1y = m_M.end();
auto itr2y = mat.m_M.begin();
while( itr1y != end1y ){
auto itr1xy = itr1y->begin() , end1xy = itr1y->end();
auto itr2xy = itr2y->begin();
while( itr1xy != end1xy ){
*itr1xy -= *itr2xy;
itr1xy++;
itr2xy++;
}
itr1y++;
itr2y++;
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> Matrix<Y,X,T>& Matrix<Y,X,T>::operator*=( const T& scalar ) noexcept
{
for( auto itry = m_M.begin() , endy = m_M.end() ; itry != endy ; itry++ ){
for( auto itrxy = itry->begin() , endxy = itry->end() ; itrxy != endxy ; itrxy++ ){
*itrxy *= scalar;
}
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline TableTypeForMatrix<T>& Matrix<Y,X,T>::RefTable() noexcept { return m_M; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline const TableTypeForMatrix<T>& Matrix<Y,X,T>::GetTable() const noexcept { return m_M; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline const Matrix<Y,X,T>& Matrix<Y,X,T>::Unit() noexcept { static const Matrix<Y,X,T> unit = Unit_Body(); return unit; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> Matrix<Y,X,T>::Unit_Body() noexcept
{
TableTypeForMatrix<T> M{};
for( SizeTypeForMatrix y = 0 ; y < Y ; y++ ){
LineTypeForMatrix<T> vec{};
for( SizeTypeForMatrix x = 0 ; x < X ; x++ ){
vec.push_back( x == y ? 1 : 0 );
}
M.push_back( vec );
}
return Matrix<Y,X,T>( M );
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline void Matrix<Y,X,T>::ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec ) noexcept { M.push_back( vec ); vec.clear(); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename Arg , typename... Args> void Matrix<Y,X,T>::ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec , const Arg& arg , const Args&... args ) noexcept
{
vec.push_back( arg );
if( vec.size() == X ){
ConstructTable( M , vec );
}
if( M.size() < Y ){
ConstructTable( M , vec , args... );
}
return;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator==( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept { return mat1.GetTable() == mat2.GetTable(); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator!=( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept { return !( mat1 == mat2 ); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator+( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 )
{
Matrix<Y,X,T> mat1_copy = mat1;
mat1_copy += mat2;
return mat1_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator-( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 )
{
Matrix<Y,X,T> mat1_copy = mat1;
mat1_copy -= mat2;
return mat1_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , SizeTypeForMatrix Z , typename T> inline Matrix<Y,Z,T> operator*( const Matrix<Y,X,T>& mat1 , const Matrix<X,Z,T>& mat2 )
{
const TableTypeForMatrix<T>& M1 = mat1.GetTable();
const TableTypeForMatrix<T>& M2 = mat2.GetTable();
TableTypeForMatrix<T> M_prod{};
auto begin2x = M2.begin();
for( auto itr1y = M1.begin() , end1y = M1.end() ; itr1y != end1y ; itr1y++ ){
LineTypeForMatrix<T> vec{};
auto begin1yx = itr1y->begin() , end1yx = itr1y->end();
for( SizeTypeForMatrix z = 0 ; z < Z ; z++ ){
auto itr1yx = begin1yx;
auto itr2x = begin2x;
T inner_product = 0;
while( itr1yx != end1yx ){
inner_product += ( *itr1yx ) * ( *itr2x )[z];
itr1yx++;
itr2x++;
}
vec.push_back( inner_product );
}
M_prod.push_back( vec );
}
return Matrix<Y,Z,T>( M_prod );
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator*( const T& scalar , const Matrix<Y,X,T>& mat )
{
Matrix<Y,X,T> mat_copy = mat;
mat_copy *= scalar;
return mat_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<X,Y,T> Transpose( const Matrix<Y,X,T>& mat )
{
const TableTypeForMatrix<T>& M = mat.GetTable();
TableTypeForMatrix<T> M_t{};
auto beginy = M.begin();
for( auto itr1x = beginy->begin() , end1x = beginy->end() ; itr1x != end1x ; itr1x++ ){
M_t.push_back( LineTypeForMatrix<T>() );
}
for( auto itry = beginy , endy = M.end() ; itry != endy ; itry++ ){
auto itryx = itry->begin() , endyx = itry->end();
auto itr_ty = M_t.begin();
while( itryx != endyx ){
itr_ty->push_back( *itryx );
itryx++;
itr_ty++;
}
}
return Matrix<X,Y,T>( M_t );
}
template <SizeTypeForMatrix X , typename T>
T Trace( const Matrix<X,X,T>& mat )
{
int i = 0;
T answer =0;
const TableTypeForMatrix<T>& M = mat.GetTable();
for( auto itry = M.begin() , endy = M.end() ; itry != endy ; itry++ ){
answer += ( *itry )[i];
i++;
}
return answer;
}
template <typename T , typename UINT> inline Matrix<2,2,T> PowerBinaryMethod( const Matrix<2,2,T>& mat , const UINT& num , const Matrix<2,2,T>& init_dummy , const bool& for_right_multiplication_dummy ) { return PowerBinaryMethod( TwoByTwoMatrix<T>( mat ) , num , TwoByTwoMatrix<T>( init_dummy ) , for_right_multiplication_dummy ).GetMatrix22(); }
template <typename T> inline TwoByTwoMatrix<T>::TwoByTwoMatrix( const T& M00 , const T& M01 , const T& M10 , const T& M11 ) noexcept : m_M00( M00 ) , m_M01( M01 ) , m_M10( M10 ) , m_M11( M11 ) {}
template <typename T>
TwoByTwoMatrix<T>::TwoByTwoMatrix( const Matrix<2,2,T>& mat )
: m_M00() , m_M01() , m_M10() , m_M11()
{
const TableTypeForMatrix<T>& M = mat.GetTable();
const LineTypeForMatrix<T>& M0 = M[0];
const LineTypeForMatrix<T>& M1 = M[1];
m_M00 = M0[0];
m_M01 = M0[1];
m_M10 = M1[0];
m_M11 = M1[1];
}
template <typename T>
TwoByTwoMatrix<T>& TwoByTwoMatrix<T>::operator=( const TwoByTwoMatrix<T>& mat ) noexcept
{
if( &mat != this ){
m_M00 = mat.m_M00;
m_M01 = mat.m_M01;
m_M10 = mat.m_M10;
m_M11 = mat.m_M11;
}
return *this;
}
template <typename T> inline Matrix<2,2,T> TwoByTwoMatrix<T>::GetMatrix22() const noexcept { return Matrix<2,2,T>( m_M00 , m_M01 , m_M10 , m_M11 ); }
template <typename T> inline TwoByTwoMatrix<T> TwoByTwoMatrix<T>::Multiply( const TwoByTwoMatrix<T>& mat1 , const TwoByTwoMatrix<T>& mat2 ) { return TwoByTwoMatrix<T>( mat1.m_M00 * mat2.m_M00 + mat1.m_M01 * mat2.m_M10 , mat1.m_M00 * mat2.m_M01 + mat1.m_M01 * mat2.m_M11 , mat1.m_M10 * mat2.m_M00 + mat1.m_M11 * mat2.m_M10 , mat1.m_M10 * mat2.m_M01 + mat1.m_M11 * mat2.m_M11 ); }
template <typename T> inline TwoByTwoMatrix<T> TwoByTwoMatrix<T>::Square( const TwoByTwoMatrix<T>& mat ) { return TwoByTwoMatrix<T>( mat.m_M00 * mat.m_M00 + mat.m_M01 * mat.m_M10 , ( mat.m_M00 + mat.m_M11 ) * mat.m_M01 , mat.m_M10 * ( mat.m_M00 + mat.m_M11 ) , mat.m_M10 * mat.m_M01 + mat.m_M11 * mat.m_M11 ); }
template <typename T> inline TwoByTwoMatrix<T> operator*( const TwoByTwoMatrix<T>& mat1 , const TwoByTwoMatrix<T>& mat2 ) { return TwoByTwoMatrix<T>::Multiply( mat1 , mat2 ); }
template <typename T> inline TwoByTwoMatrix<T> Square( const TwoByTwoMatrix<T>& mat ) { return TwoByTwoMatrix<T>::Square( mat ); }
#define MODULO 10000
using MOD = Mod< MODULO >;
void Solve();
int main()
{
Solve();
return 0;
}
void Shuffle( MOD& n , const ll& power );
void ShuffleMemorise( MOD& n , const ll& power , const ll& I );
void Solve()
{
string S;
ll P;
ll I;
cin >> S;
cin >> P;
cin >> I;
MOD answer{ stoll( S ) };
if( P == 0 ){
if( I != 0 ){
answer = 0;
}
} else {
// 素数pと正整数dに対するGL( 2 , p ^ d )の位数
// = ( p ^ d - p ^ ( d - 1 ) ) ^ 2 * ( p ^ d ) ^ 2 + p ^ ( d - 1 ) * ( p ^ d - p ^ ( d - 1 ) ) ^ 2 * p ^ d
// = p ^ ( 4 * d - 2 ) * ( p - 1 ) ^ 2 + p ^ ( 4 * d - 3 ) * ( p - 1 ) ^ 2
// = p ^ ( 4 * d - 3 ) * ( p - 1 ) ^ 2 * ( p + 1 )
// GL( 2 , 2 ^ 4 )の位数 = 2 ^ ( 4 * 4 - 3 ) * ( 2 - 1 ) ^ 2 * ( 2 + 1 ) = 2 ^ 13 * 3
// GL( 2 , 5 ^ 4 )の位数 = 5 ^ ( 4 * 4 - 3 ) * ( 5 - 1 ) ^ 2 * ( 5 + 1 ) = 5 ^ 13 * 4 ^ 2 * 6 = 2 ^ 5 * 3 * 5 ^ 13
// lcm( GL( 2 , 2 ^ 4 )の位数 , GL( 2 , 5 ^ 4 )の位数 ) = 2 ^ 13 * 3 * 5 ^ 13 = 3 * 10 ^ 13;
const ll power = ( P - 1 ) % 30000000000000;
if( I < MODULO ){
for( ll i = 0 ; i < I ; i++ ){
Shuffle( answer , power );
}
} else {
ShuffleMemorise( answer , power , I );
}
}
const string answer_str = to_string( MODULO + answer.Represent() ).substr( 1 );
cout << answer_str << endl;
return;
}
void Shuffle( MOD& n , const ll& power )
{
if( n == 0 ){
return;
}
static const Matrix<1,2,MOD> A{ 1 , 0 };
const Matrix<2,2,MOD> B
{
n , 1 ,
1 , 0
};
static const Matrix<2,1,MOD> C{ 1 , 0 };
static const Matrix<2,2,MOD> E
{
1 , 0 ,
0 , 1
};
static const string method = "binary";
MOD answer = Trace<1,MOD>( A * Power<Matrix<2,2,MOD>,ll>( B , power , E , true , method ) * C );
if( power % 2 == 0 ){
answer -= 1;
}
n = answer;
return;
}
void ShuffleMemorise( MOD& n , const ll& power , const ll& I )
{
VLArray<MOD> answer_memory{};
for( ll i = 0 ; i < MODULO ; i++ ){
answer_memory.push_back( n );
Shuffle( n , power );
}
const MOD& last_input = answer_memory.back();
answer_memory.push_back( n );
bool not_found = true;
ll num;
auto itr = answer_memory.begin();
for( ll i = 0 ; i <= MODULO && not_found ; i++ ){
if( *itr == last_input ){
not_found = false;
num = i;
} else {
itr++;
}
}
const ll period = MODULO - num - 1;
const ll d = ( I - num ) % period;
for( ll i = 0 ; i < d ; i++ ){
itr++;
}
n = *itr;
return;
}