結果

問題 No.2033 Chromatic Duel
ユーザー 👑 emthrmemthrm
提出日時 2022-08-06 20:48:54
言語 C++17
(gcc 11.2.0 + boost 1.78.0)
結果
AC  
実行時間 7 ms / 2,000 ms
コード長 6,065 Byte
コンパイル時間 1,823 ms
使用メモリ 5,452 KB
最終ジャッジ日時 2022-08-06 20:49:00
合計ジャッジ時間 3,561 ms
ジャッジサーバーID
(参考情報)
judge15 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
testcase_00 AC 5 ms
4,564 KB
testcase_01 AC 6 ms
5,452 KB
testcase_02 AC 1 ms
3,392 KB
testcase_03 AC 1 ms
3,396 KB
testcase_04 AC 2 ms
3,484 KB
testcase_05 AC 6 ms
4,628 KB
testcase_06 AC 4 ms
3,868 KB
testcase_07 AC 6 ms
5,088 KB
testcase_08 AC 5 ms
5,232 KB
testcase_09 AC 1 ms
3,396 KB
testcase_10 AC 5 ms
5,132 KB
testcase_11 AC 1 ms
3,392 KB
testcase_12 AC 5 ms
4,612 KB
testcase_13 AC 7 ms
4,348 KB
testcase_14 AC 6 ms
4,744 KB
testcase_15 AC 6 ms
4,116 KB
testcase_16 AC 1 ms
3,504 KB
testcase_17 AC 2 ms
3,460 KB
testcase_18 AC 1 ms
3,508 KB
testcase_19 AC 1 ms
3,400 KB
testcase_20 AC 1 ms
3,508 KB
testcase_21 AC 7 ms
3,968 KB
testcase_22 AC 7 ms
4,072 KB
testcase_23 AC 1 ms
3,516 KB
testcase_24 AC 2 ms
3,396 KB
testcase_25 AC 5 ms
3,900 KB
testcase_26 AC 1 ms
3,560 KB
testcase_27 AC 1 ms
3,508 KB
testcase_28 AC 1 ms
3,440 KB
testcase_29 AC 1 ms
3,400 KB
testcase_30 AC 1 ms
3,512 KB
testcase_31 AC 3 ms
3,968 KB
testcase_32 AC 2 ms
3,388 KB
testcase_33 AC 6 ms
3,768 KB
testcase_34 AC 6 ms
4,660 KB
testcase_35 AC 2 ms
3,620 KB
testcase_36 AC 6 ms
5,092 KB
testcase_37 AC 5 ms
4,692 KB
testcase_38 AC 1 ms
3,580 KB
testcase_39 AC 6 ms
5,100 KB
testcase_40 AC 4 ms
4,048 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int v;
  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }
  static void init(const int x = 10000000) {
    inv(x, true);
    fact(x);
    fact_inv(x);
  }
  static MInt inv(const int n, const bool init = false) {
    // assert(0 <= n && n < M && std::__gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) {
      return inverse[n];
    } else if (init) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }
  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }
  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }
  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }
  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }
  MInt& operator+=(const MInt& x) {
    if ((v += x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if ((v += M - x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
  bool operator==(const MInt& x) const { return v == x.v; }
  bool operator!=(const MInt& x) const { return v != x.v; }
  bool operator<(const MInt& x) const { return v < x.v; }
  bool operator<=(const MInt& x) const { return v <= x.v; }
  bool operator>(const MInt& x) const { return v > x.v; }
  bool operator>=(const MInt& x) const { return v >= x.v; }
  MInt& operator++() {
    if (++v == M) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }
  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

int main() {
  int n, b, w; cin >> n >> b >> w;
  n += 4;
  b += 2;
  const int white = n - b;
  ModInt ans = 0;
  for (int d0 = 0; d0 <= b - 3; ++d0) {
    // (N - B) - (B * 2 - 2) + d0 * 2 + d1 = W
    const int d1 = w - ((n - b) - (b * 2 - 2) + d0 * 2);
    if (0 <= d1 && d0 + d1 <= b - 1) {
      const int seg = b - 1 - (d0 + d1);
      {
        const int token = white - d1 - 2 - (seg - 2) * 2 - 2;
        ans += ModInt::nCk(b - 3, d0) * ModInt::nCk(b - 3 - d0, d1) * (seg == 0 ? token == 0 : ModInt::nCk(token + seg - 1, token));
      }
      if (d1 >= 1) {
        const int token = white - d1 - 1 - (seg - 1) * 2 - 1;
        ans += ModInt::nCk(b - 3, d0) * ModInt::nCk(b - 3 - d0, d1 - 1) * (seg == 0 ? token == 0 : ModInt::nCk(token + seg - 1, token)) * 2;
      }
      if (d1 >= 2) {
        const int token = white - d1 - seg * 2;
        ans += ModInt::nCk(b - 3, d0) * ModInt::nCk(b - 3 - d0, d1 - 2) * (seg == 0 ? token == 0 : ModInt::nCk(token + seg - 1, token));
      }
    }
  }
  cout << ans << '\n';
  return 0;
}
0