結果

問題 No.2033 Chromatic Duel
ユーザー chaemonchaemon
提出日時 2022-08-09 00:26:42
言語 Nim
(2.0.2)
結果
MLE  
実行時間 -
コード長 24,246 bytes
コンパイル時間 6,075 ms
コンパイル使用メモリ 101,248 KB
実行使用メモリ 1,632,548 KB
最終ジャッジ日時 2024-09-19 08:14:39
合計ジャッジ時間 10,640 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 MLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
check is on

ソースコード

diff #

import macros
macro Please(x): untyped = nnkStmtList.newTree()

Please use Nim-ACL
Please use Nim-ACL
Please use Nim-ACL


static:
  discard staticExec("echo \"/Td6WFoAAATm1rRGAgAhARwAAAAQz1jM4Wf/QqldADCdCIqmAHyeLmzPetXzW8A5LcJR8qDQ0Kn6/cTmKy9pigdVHiQEpE0M1iSzK4oTPn50vRs5cSHuiU1y4cDtuDKO9T60+DGOhIRsqruu/xrM+slYm/W0DrwIoNkluCEF0fzSuuPZrg2DT8kP/A5/Yxvx2+HhbZp0xi7fso1/40RtKhHUPppnIUu+070RHHiUbz9Lw9o/TvaPmkPT2LmhwpiDNqpbI/78JdQLVgzHIb2rRzVc92+b2l6zXlz3uqgyFTK1XF3dagY8OsUuwB4tk4wXJPqUzwajf9T9aq+Qcl9QcrFCAXkDcqeUqyBY1CQTwxXpyQgd8NgTujlpH9vNte8YSANs8Yof2xeI+5wdSfwAhu5NlWpyoQccrSRPc4MLK8Ugw83fIYwrX88UknwRm3E0qs88REHmumIDdBOJ40qrqBre+7cJfTJZSO0ec+8mYAo2OC50kuiyvlzkRyN3oBnSwaQ7CiqEKvabVvIF3+Ee186gMaOf7RgTJ9Z0b3PtmDDKASx7Dj6x8szVvLGqm2ZAXdiRJu4a3+DCqVfSvTBbYUcDH/cGZ5o7/n/s0vMsI/B+kGWVG6Yse52gJkoM/GtCOHRwO7n0R1TQf/0hNQJOI7b/s2n8/vsXtc2iOwP3+jHPy2FghwBaUFjXNUmFSWOs9uAym6TaUujvNqj56xm4wZdTDEy9FaypYNnGqKimBzD5E+WK4RPX02OvUevBJedIbvhZJj0Z1bWVkqeBS5IZMrNH3GmbIKx2ztoTbuDvJkBM5xrqWSBbn98MUguxxdARDfTx/jVq7gQG+grMrZePHQCOhkPZDdgL/0Rgm7GQPlLOtX5IuofMefcclm+3jQGf8DO/EkBZk3beZua/jeCnznoyyVsmORG1n9CLPH0QGgyPxHjXwXMjDvWTfgJ9oeOubp/T2bQOvTgPTvaMD2ndH21pyi6RO5lATKT7cG4SniBveNsLzP1vdNd23q5vV0x/o7+MkV46ugjm57BxCVng37EzWYU6XAgP1uWrSFucpdXNtnWGR2zS+P/FzVVljp3RTtw4r71RhJZQCnt22bkwkmVAKXnrhq69hcJyRcyDIXPyDgQY6n2wYP3qnODIknBm8E47M5ib+zM+yDhaKHPYG1Sqv/naq1LNI4iid8YRSz+SCz3UfyGY5F/tNA7blLIjqXY+3r0Hq0AEDQl5IGh1VIkxVol9n3dLjU0X0mmAncERK34BjWy7iNNexoWgA1NbCkfdrs2wVCU9q0nPrWFNuPKjT5CwBCyLPZfTkU2thrX0r17zG+omSVSv69ThuuDnYEAw0AwUDZQCKAPbsPR79OJ1aHrPwlTfzmixLyDcUwjo3bHYHQqjcxjlvP1lp8fieHio5K3AI3yuQAE1V8pF/u9B9UWufYYk75tzqPWymqemhPWuxOU5btbg0Dpvuutkey7CH6s1oDvfsJDNK5rRFuUXIGvNjxBjon8vvR8/6aOgqxRCSjVRJX15VpK2eoLxdv14ZjuP5wITerRSE08OiihEsTGubPGxJAIbAF/kZP/ezHsY2gfn4KMYJKGFiA3ZphqvkF0EvgMFsBqKZCl7YBarf4pbI92AdoC38tsYHsnUiD5T63Rde/9oI6gKxd2vQCEezCL8rGZnNMV5sm3G4KpuigKQg7kNI/z5vYL+nSLH7fMgyJRv2tlv8eZewI91K8EeyRE7xGu4i0i8f3iY+3xh4vA09rD5UgY7oC5GajCCTklCWDns+8ogTNpwo7TJY0gbihPbznU4rmERyNGt28FSVCxrYSKT1RsAl13XI6O6AaQpLeHGYVubBWU/JIygI41fFGQCoDMXEjbuoIjfoADeThb3l70Zq24kAf1Zal2Fm5/bPu4xd9V2R47hTh9VWrH/Pwo9gNemcnow/H+P3/tLCdekBhU+c/cYqrmKPHaRVI5tQEeh7wk3GVSMW/3ah6xqJRtigLEsK+qp+47FevG3az43vf5rsdVf1lzwcGQwBxB0s+sTDmINmSIG5Bhfvd7dJKv3UopnGkEwePdZjnC1wU0AvlRxmmUIf4kSDP7Hh50l3YDXZzBiO3c2IfCGdJmaLNEMDqikjvZ4bwssw80M5CnqJGQFSC8sPUiE/Rv7z6ns8e2Msxr3GdZEVJJvv2LuCf4P6MqBuSJlmhxiuPCCoAPeqP+YUtLDnzg8EIU8XgJ1ME6E6KndpnsOLa6CAYkXcJFAU1qIWUxSeGgfn3oGftk4+nikSloXYQtTqnrJ1syaiW+EshdAadRMNXxbuPmfJSz033oCJh8NTIv8//z3Yns3jGruod3JfhlellUFgZra4vFmclQ4Jw/6vQI3rh8jDaXUlSn8CYIoug82w8ayhgWN3omOltbgW1iz39WsvdaBllmkZBVp4Ik8/3U1tjEURTx1XPmJIDZRzTVHJf9IpoPtKRKY0RFsgNNhtZSp4EAXqcO+Q1zC2fSRZMiUUR559N3Mvbd/wtfvX2xu3N0efoiqJ9+rgY6rvn8gem5YWav0lA1j8fiojOCJRSXSGOQ56BocMBIEJEctFgaKD9nViV/jY9AtpstGyvvYYVxjKolMutwVaRXUQYz5il4wldtevC8DIG5sSA1s6aHjYpk3M9W5QRw6B6+1xcvUdRFJuSYePtIdU57yjKzksa9jFfmDk4gkdVoZOY52/2kMJsCH9yKyzkTMpDIJCE4TxW+8oLMvF48TfG5Ny8rlkIUdvAFfdHJchFWgOkc/l68o4cRL2p7Io/L6JXWJ+cqTMjNHJDXlOvN0LkRW1SX+Cj2zxBvAPATNdNURfcgwmTIw0XtFIEm8utzdSBgmIvKr2Vev1TK03qUyY3V8eoiANbUXM0yFsyfIDOgVhvboTyfX88e5fV7Dol2VTTyxedaTwxKK69v2YtnooTNKPPKwrHrnpE0ShpHtVphl8XwRM6ZRTRNA9qKZ3m0EXBh4R3BteQxa3d3eT1VQ/740KT+lVRxfGCkl7xnHOlatM7m90eLUqosIPTNegyMgMpe6tuW9z+RcdU3Iwqqv6EikmaBmKqB+hK217qs7MTAUjTR5kV4De9oQuKORKvCCt217cpscRx6UiRZoofqohKeTUmzMGkbmJAHnr/wR+aCIvdHa1zbiyKkQ+nDfwG+3MJsVpUFLhmHr/1tL1tV7NkUoETtR91qPAfh2ok/Arme6/bQu2TAYc2w1nkfY1K+4DW1m72fKtnYWWAIyhcOALAV5W82O7HHcyMB03W+Y5BVTq48iGr6IzQsfGEWqDBLjXcwXMegiWSVrSmsiHGGvA2LdgMIzUMZpLlnIzAVVHMYMeAEek6gYQCMcEUflTLenmL1op05T/a2qDu84TFJ/vlUdLmT4IWwi6cPFJQz2sTZhzcKtyhyWKXwu5uYj/G2QQH6dR0KHjr5JOZ0bzjdmCinJNfi0MPMxOeLu1PTeGFiJMizpZS7qN+YtT9/jsPoVg11WvLVfHzFdnoWWyuncPOPz5kWsEw8c2uvCD/YS94TuNs33lKKJAuyYh+eNd2R8ffEUYjX355aJADRAwLx70JoS5ReRfDFyb4ZgO6GdNwsGnKdFIcH+vwf85Chhh8JlazGRdlAmz3Q9KmDQq2DzQBgt+gDzvVeYQd4LosS/pTIBmkfJlS+mLatUxA1heEaCY9Jh1lhodaeS5khLIVqQhxlRX/2F6JiDgdz7lpBoXC5tIIycsqclmX1o+h3sfJSCcDRuXdAxB1TBIyMZifZlokIQws7XfUEVGz/hGpEoJfpbKbb5gB7FSBEAxlp9u1hx6ZJHCr1e+svlfL9GTD+4K5ks0HcUal/9O0Z69Zdbp33LBtOe+yQAUSrRsYLSKMQZ4jNr9yFbpMC0Bzy60ySErwIwEy0klsQ4SoO2anB5dz6KZLpPLPKhdb5BTimIZUHgXeG9i+Im2rDstOTQ5C9JIQqcVohhk9udkPnTqPTdF//l5SIEfjDumnDuXSpYl/yhfynLZN7dnob0JonjRWCWHGu2dFHygr3HFsGLQ3NrxE00pxrvkw5j38p+TXHg1EFfE7Ej+ejfJNEN0ZaYYpJ80vbo6zn2s+iwkddb2BYpuLYwLAUa7yxmUNZpiGZCqWnhkmDiT499uNjcDonulkA+MsMj1d5c/ERfmGUC1ggk6Qc/4s6DqSrZN+t52RekIVR4YoVpz8KafUorrDr95bOTfTZIEru9paxVAPnhkLphOr4qWaxuPzpf2bBiFTENRWncMgl1uCQ+9hyzRZFLJ0yZJL1jO/Imtpws/PZVz0iti9yw04qecL8uyj7L4fej/EAFJMKaW7urwFE3j1St9axX1blrTgVfxXSYBha/P0gtCD2+U06O5dOZbg8F9zyv4aYtDlNvsAWG0FMEwC3TgeY+LZX7Z4VLMLUUbutba5sczauPj7Wg+ekF63hZePVH8PLyG/ebuMBSwo91SpqqJRlNAtwV3z6AHpSxwzbMm3oeBk22ZV8AX0l7OaN6vFeC3LVXqvEG1D97My9EuvaFt+BqtyCRPmcfMCeNdvmYjhTzjqiMw7mudZMP+u2MgL6nOFUs8AM0AX+TDTi3sTMczRRHaccEp+TlvYMYeAN2ogl936MfIVmotJ26VVhrXSAEVSkPZKyYk8PGf9k9EwsJCrdvjg6KIN25ayVE9yW+VytSNYH+QWQ8iZE8JqLxlUcovQ0qeDMiOt+XKgZ1LLn+hoKdwbpqTAslVJ62ZMBm0D80JHoNQm8nAR7IY763oSjOxpLBF9wU9nZ/BVyutkvljCNPGE+a6AFWNrKIlTCFP3J2LZIMB+15ankwUUbNeLe9/txFFgaNbzyJao8AM/9Pw5+I4qFeDnrAaXkxjk0SzPFtme5vzAeJmeJJmivH4DWO81VsYRiR20ESNYG3lbYhvtmCnrJ0MvbroUxpBd1qCLrTPLuo1YdlX7ee1fw7fPJ2x7K47eH0rNhKubaG5zyFSXpTf4hQ0z+M1RaMoYdA9l97Pnh4oDK9lcFuk9omJaweeiA0QOUThio9oiuxkUr6rMzXYYncJp/UC389NC6cr/PtZ3TZzyLKKmScoGhjsk3hQtGLdqncZD1KgngvzeKEn2l1ZSyXA1Tc9dZrjK//5u++yacj3f3/6YPU8go/wIOdGmGoOv2qR35vgipY1o444xi1xinD5b0KIRFKq0ilgsltR3wk+4EwQCKlfpZUirL7e81c3fWOM0mZDwTAN9PRANIb03xxJlAJ0HKk9AQ3N5AIwIWxSEn0Hge36s+sPwMzwRj/sNFSkXDar4C7nUXxD+teWIRvkXbmuYhsWBssogXxukkH5dI4kGQhWHF8/QktvpXzLus9nt0c1F69f329drbr/TV3kuCJtO90QtRpWvpCtSDkHH25BLeBrxZKEP4mZMt3kwavgng3kckGG0t5Pro8i1irU04Y1/tGndGSrRA0JXo7XlTV83WQsDhtXBNxwp9Nj1lx2Dtx83rH6wLwS7abXAXfJR05TCdbh8pd+Z14+wzQH+6smITp8/yL7hreYIHWDpV1VKJlTYpHw0WBNoWQHfg3vHrqmXXiB279iEfCVBVoppLUxnCkd3iSVbL7DwfMIqQ7h2PCZRBSgVZqXqp4COVev5P5VORutfLWgbepRgEjYliDGEI6s/5RPRvLhJ2co1jqL+ZwmJgd5BP/8mxOq+2yF+csc1b8NfBTUwIys+UhwOfbsQv5WUvRAimoqk2aKGkK3uf3NBC5tRVvus+dEo4eM+lkjTOUTgcj0ItPcH5EpU/2iMMO+Pl1uYfVD0IfKgGqae0zuWCPURFgSw/JTmX6qyMvQQioKlxXZqVq5fx2hI9sMG4nbTPhiGHFo5KXestFl8stXIaPXYxz0V92o7oL57hVg48zhJqNC3Y0kYyfymbNR+/y84wX5XMA0BerqmwU4PDYdIwoahR7k4NTwp8IqKvyzq8A/bkrS93vyGxZaVaKkE4tGtznagit+EQxYxsaztzpuS6r9nFnmJ0ANrlbzE/f+5UmyaXHa+Jh6ZTnSl1Q16YH/NMr2BlW6ovdE6spDHeA6QoyvfDA59S/cxlXCzpQr3HpiuyXeYvHL1rnnrvsRvWitUZhE4Q7aJF2Lx3u30q3Vm/ZT3hsXckthxM6sTjx1kQ7MAMuIA85r0hOpZUmydF7ImTSRBzt4ECMs5kpFz2D7G5zt37SgAjklDY6MwvvnvPnnwCTudXe8Bp87JlZyTPRf0NL2Gt1GRO+ytTI0z1Q+CVrXujuonQFXFg/PtPu+BEh9Tz9+L2YCQ7524cZCiK9EVayJDLr86wKGbScvHY1+ZFXFN5CLRA3rVtv71yowD7gXx0yRTth6XYlGo4+vaq2qXfOyiX162C2sdZvqyCSYTVwz5QaaucltoRS7/ctL0fYsZlTDc/PPuQxKi3SW+xAusZNTEMoFPUZt/0EYwJhgyrEfivj8oqIw5CWMbFIBLvDpOQHkQgEjZZ6Xki6WBEWvbnkuV40DmuyXD20BcEWWY8bODGhod5tKtGNwj88DF7AKWtZPFdWCrjIZvbEOEfMGQGi32kLHA6Va7Vp/Z3VHCal3OoJ26AUWjCxMiMbewcTTYxKl7VXVlgqDsKSM6ygacSRhIdJDDTKieKA5HT+I7mli2pnko5YGmRTbc50JeGvNa4+5m/TFtoySVTfooAtzuNIX8iG6tjC7OazWxlgDFdrCq8AFncOepJuGNy6jUVOAUbYQplHxO/op3/OGQXNYzawZ6msnPqJ8vuOfewOo5YMD00iM6nUm84AJOZFlEj/qQRSAevzkI/xaV1Df+m2mFT+j0C9hulZBAb+70ShbOtQg28lsn8F9IsZImynze9I5QQ/2nmrWcOS2zhvnCZEq9iY/gC4iBrNZQb/AyS4hOgr+wRLsI04ETdT1OSSe94Tk3wB9WbWd7bAON9KjPcZyJBNy+enjTvBOXak45oNF1VzrRiZV7YnKExtYZBus8l+RdWzg8aoq+X60+GcdZbkvC0PkIOZUHb/bSADnD25XHZH22Sh+b6LsaxEKs/MZxMfvl84YJ5CIcQ2ERrfCF6EIkzMTuk/yR3Qmnd8E7P4QbQ9vXINnqpnQo9RTLjAZlZ5bP42iNTN0FcMoOkdIKgESDLWMaKf9fcB+uhsCWWlAMPrLTJ/9+oNJXA6RYo1ecycCROobbfSe/TyjU+nVskyA00ap57oV9zQZWRMkNsuFXTVY4jWBHCJhsA0/YNfFzNppn/gEtjfdy8na3PET2mULbwYQbm1AqsPtvwT+ZITy8TKflLS2LftWB6DVl6NdA0HLb0iyj84vAvv5YVe0KgTDdo6GThEHQ4+RJVylU8HuIWiUUxggC7zVPS/jPHGv70QmZSwq/+t9nvBX4QIWd3rlSsZ2Us/29xLog6qG8B+Eolwh5M28zL6EW4Sum8mf+ov2Ho2vJRKzSRw2DuzM0BLRDupOl6dYo92tfPhB4n+fPEPIbu+7aqgEpigNanaM5pUkj0f+j3Iz7BTO3g9wES5PL3ZtOUY6mMmIOf397oPJIUTnH7C6DAwJFnd2MV26AgdrMqalG/Enrimsay83bDu+GkIj8OCMWc7N4lrbPejixjDYu/DsLbHrW7iZFDRzNtVc804HktDNw3W7EdQ4GBsOL1LV0MBJGv71RCTPmgivVk1CQUKGlcH8wJt3ywbEmjZxdhy3B0ilKL4ibgaqSfE1WD4Lm7kgDGgepU4dGcpUBjCzd3WdFD0xOrkPiewn+iJTVrBwmgtoyQycjQvFQVvZuZn0AITRyX3ITaAub5JaHiXx0t+cJKyi2RlGcGTRrojrqYJQ4vw5l/f7KRUZKiI0zVyu6xDW4FJMQEoNU1Hl3Ru7V4Nf1McVZ7UWOyie1OBCSUmbozT2pwEUODOHvyb1kErJRbojA/iDwpVhpEc1Ivs2bdhBiPRNmUzqZ9j4PW26Z2CEQzX0BJJeBVBgXxEIVXKjmfAp9GRl+hN1xuC/c9Ps8cvWFYKwwdF4NjDRecKPupJbaIdzBg0+2qTbVzE8S5GGFbjNkR0cEE4mWSOUb1rIJDnZscfxe8dd6aUtHPPdO9ePq1YQ8t+7tGcU4uIRec1BNfJVsBAYqqjZBXHA4ptRcCSVOoyAKNUc5QtTKpIVPpBbzcI/Zq1mcDyA/J0Y0wEBteJvWot9lZQuj+BBVxrONYTsPfVrSJh7qW9GzB0HuU1Mk9+zOKgZ++d9C+iiz4C/KdqfaEQqG5ztpz+YQ54v7gGkDl8SqZpLwc33eeZdfF5Lz8aDU4VCsCTMpMfQFXWclMn0/pM47hnAA+fvurBonKRkea2dsVegVsyoAsQ12gk79cEWBPcYYUTzPMw5ancAl/r40ZChWi/PgxZ/9VFQe1SVUxX4VimFDiArK0UzfRK9v+Vu6qsg7e1Fwkj9A3ul61YSvtre/shonubWcUdCpxBPlPq/FlYVgdBefqwAl1HDbmcTo77HbuMz+rl1niFIvUZDv3MbInGivzp1F4FWnAVLkEfLrPNA5XX/iIyYo4iavUDxsbzgHQ3tVDpRDof/Tl0mXpxuvtaDjhZ1UVq/6YFX5CbR+PE8Op4oF8clemc3OZAjqH8ws8VdtmtolCYIfJii5tzh30q039GbEhZeCALb7UEDzk+kE5YAzoSgYE4XjOgv0PHzKRgUGEdxuI3r6qGrSAecWNbviW2fE33FRNPFTbbLihdRhk5z17S3B2miX7sLUdPnoloXIIr1Ya6RDyNUkYjJ0AOALDx6Oh9M/lx7O6ltXvo25GhPTuWSJCQz0WZAx6Cj8pUH4JjpqsG3RdkGPhECw/9Bd7OsA6AIXxkYfmuHlkILfpQSwhVv81nvvuWSktBl8MclPefXky2ltDkWWfbNby9M9Zs6Maf563wfWsHbaKeIfd2vAzRxdCkRnU0jQVmTuAd8AKBVOx4O3Fst5gLto5318sq+zvB2qqggqerIWCtezypMz8VWmi/2+UAg9TJ2ElXXXUGoPCxHZb8OPiCrWnEQs/LN701opNm4EYpXEeIz9kTqlFW3eykXd/w9PAu8SpSe3OyHb80s6jQkXNt6r6B05WHQGIApj5T5GoXzg7gioCaCqQZqJR3+fgpa3vcsXD+Ue7Z5tskEzN5ZE7RDXOem/hKnQkR+WC2P/d+UOBRjCHIhaPgnbXs/0HGPiwk9zm/GBIbKqqXo3nJrxLfA8XdDdfi/I2epfRaUTO4jmPVL1Ixha9N35t5FZGl490X9/hPjj6Yu2cuNPq5QRrgmO6FNJJFA2IOQi6iCW8NNPvmZb+EtCV52f5Y99JuKUUfs0+5lMOZZ3tI/wp8rGuO9yJ+oXn3t5De43CSw+n4vCuOB40m1Y4aZ7UJfnz4Kj5R1jMIjFbei0hOGSOZePnPoAGSuy3INtlrfSza9/ZfA8uKaxQzma70k6czebQ8uSy/E/QQKIDuDbgdRCy3+Dg8qlN95Sf/obrmmQXJjOP0p5hR70YHZ/pI9YdPA0hHx3rFrGbr6tzcy8mYF3cEpfF6ra49RbKvQIqCOEIYhEosyyR4u118CfqApyaGmFl75imZ1K6LrvBiBpTrmSS1ITA8g9rXdbYcEBUM3kRxx/aziVkrQwjOy4xu8cdILY86/riS/0pbzYwYSt4/qS3aZGVo53ZVpcZLQTXK4y8X9ZaH4BjlvzcztieaBJqX2j4XgO5dIer4IMVasO+6vQ9Xszu0RGJCfHDkiHhS73IC5UB/X+ubuYB4wZfs0TkHMnSIq4+WnVoYczdbaQzCIWmyGlL2aC3oacIgvJk04oDnaSzwXqTJ80yfcVe1jWTXcpdeJn21rBk8tD5YO6v/Z0TINQYuZuNWPaSbfxFRf/ZKrFc3u4oDJwXIio19xBjOTB2wWz9bg34olhqPrcptI5kvpyP5KEuIbkuAYfSzd1BcbXwKniflWrJuLfG8s5cLHdqiJ94CRr97wYTqUuBbotbQ1rsdaY7X9yW3Dm9Bu74W75RYO6CkTN5XnsYlJUAHez5jzfOUjU4TwMSnkyUoRqqJ8kP3yXEQFwGk5mbfzl7oyHL5CQx6PCJi3Tsx3MfAW2p0wcy358YmxF2mqnfRp4VhRZ674ud3/L94XWb9SyXeJ0Nq6/QonSVnrHv0uuz6ed+qYTUTeoVvrrm9GAZUmw9bnX1adi54ZuPuIHciPcf9zus2tspbpycO8ZOSRbnEbRthx3jAPrWoeeiFuWGbYtNrXQmiD9QjwUSO0iXsjwlIjmg0mQObzpWsRjdz37si6xrzuXWTxZR05Jz29SwsJXF+iixQb4E3iId0hAGPQX37uG/c9SjaNrVVtg8OWu3sWIrMKY4sz+oUPxpUTprB7tqFR0EXqEJkcbgJx22EXDFaBmfpi9fH7ECdQA8j1gYQ2HqCa8VnUlKMk/tiWu9U4vMPm0VR1B3d/avvYvZCHvjWbKEmOiieeZRjZKhTtICNnIEY9/RI+hRBNxhdHIvnRQFxJb4X9f9b7D6RagxXFF40nzv8dJH0beSkkmyFe3S/kieJtfwBaiVZu5jHHDqy6wjjyDWJwcSsR22bueym5+bXHj1WQKYtXWGsAmvhEGCaMMMdnIW9u9nGLNUMMwPV2IB+vf85TsigxwOx3qUn0hn7X4JEgWM5RqtljDtkL9pnsuDtDKXy47+bcQYpaXy6CFR7mUUI4p0OTWMACWZDPz4mdiqNmaFoGvSyb8QWrFt0B21EruhQhEXPLT0RRnTYYYtnFSIbpUVmwIJRrc9tfnF1l1LPLdWzWZJ/9sjWODd99O1+t8MybiIr/BUxw7iUQNdGkUJnsIQVTx8SK4PSypOfQAH3RYWcknjJMwX2PFPcLXh0MkQNW/iVuo39PYpL1AqqkLFgSCQKZ7i7sdjwVjR7E6tjvGNmeVk5LictqhUWUtZUWGigH38xSKpO3mmnNd82KhMDKp0UUtEfTHiAutaxdRN3LCK9BQFTypiv8w8l6lD5yGwyKRa8+/MVpVhQhfglu/1NSA0BIm0aVprK9lOj5fRrSdARIcOEw3SFZY/1GI9anqM15WAYvPi87lmHcDwGeqYx2yKMBNh9fXH+z0f9ImgmElkRw//pCBdoeGB41S73o0HmGEXxKaLHL11CIOIxJYDiOzk+s44XW4XvbRKQe3HSzsBlDWIh+VVMOxMMdlEs7VrtS4vbBydlnTvFf91Qxm50SqG2ApA+Y5jumKXaYrLpOWP0xKD1FdOQhvykQnCHCvjbz/xl6pYlwpzMe+IaogheR8d+L5vIxCv8nu8GnPlS58nEqEgCfIMs3J+U8m9saaDAYaY3R+7xaTRZ/3TxYxFN7l5a/hJaLcx0QHazf9HVOYRZOXwd+9JNOlAJOvWChrpX2FZCvVR++0u0T3M8SQqULB+4f2YIVcSs9Yn4Ojz9FNg4+SGLVf+IbIi9ts3PsY0z+T1G7Lc4FxzmH9stXRBMtu/LwHeuwgcE6GDMD8b9K4uplOHFOu7AC13gaaqEedPLzvy+qDRHZGNZA+PdVaLr99kl8kS6fYvUAKv4hkAtIettYNeYS5RW6LLEb/n5iEW5cbrs6SNcNxr/OCUWPUXC8uGc5XJITysNtEDbmKfJUhMUB4/IYPpqE0ciZifHv3Nu2S8WAHw5k3pnnl8yFxPqeyfZO2Xik0KU+0veNPZdzwHVRdD7D9Cg/sE4JpOUzCscvsorq9Vtuk/mhW3H8iKTP+YMyZWiQWA4JP3oKGJ/MgxxMBxk5ly0NRICsc90S8uCzHSEVVgf9Yxbyf0M5k58JigZrvaYCoWwFUqFW0HLAvTxwioWdPKLZ0IzYphJx+s/Vb9d13HP1qtEH2llGa6LGqwB7b79YE7OSRhD3zK6YUqm0k1CRjHq4NC8VquUnPKoccPD6AHw4c89YO8G+/GY+K+zr1FVAMOeIBrg6RSCoHaBRe0dD7gWg8oTfkaYP/bKgcdjHqBZnJHVzjqhA5dLZ+qkptHrX0aQdeVSVJzqOctHFH3k5/FqGp6sP+KMcqTzGDDM33pH1DeFroCUDJNgb67Lcouf+L20+jIb8mYmz7wwONpcYhZC3EIkvrgL9WarRB6xTd6ehpsJfzQ19Aue9wzaoBvXn9znnPOUUOQSD4Z/1B2ewRSeL+/wRGbweTR3YDNphaRB9DG7T6qvgzQsF7KBpW1NyVGaYJP7Rkqbjlh6WJy2KgMZLWVMRvV99p94NiXAFKFKV2Dbg/Mq9NpeUSZV9s3NKWcn/YjV2vO7o4DYfkdeiFfJ4+1+mCO2+3LgO7u1d9flh7Uk53iWVffaVgAGsTlWTxnTfGY2baMXZoAE4de+xsmw9PrXdmWfP8vgP2cjsgCHyL9tKKsgzYEe/xzp7LK9cF3n5GmrlD0cl2aMGVbLL6dnk/HqiEn7H1JVw+CMsxyYLZ0C5/o71cbLh2EyZ4c1nej9UvJ4Kk09/0TaJWvO9oyPEQMk58pfETboQ/2XwZF3bhk1PfKeFrmq+0HF41yXbf72mtkIudLIn3ZCcc/Q6WYP/xZFV9E09F1C2wXcT+Btl+qs6r3xo1FgShHqFxHSiaSmlk0gmnYw0m9vSsUuNdt5qoh5+Wrb6a7YHARwLyGLD4lBIFwu0od/4CwWRj8AqP+GBvjzpr3wf9DHILdsZYDGn5vq78iyk9fqP+x27nteuHWFU+wBUGFj3haut//NZ6U0/pc6PnSM6phetSOQIXCo5CLblIgQ6LKWu0D/Mb6jYqtzcjjPOupapxY8lV/GJpwHQmeG/D8rD8TUXT2t3DyKPpbJHlKFzrpPGn538s3rVVD6gMtbHY4+K+fmwd7r8bnLFhS6MJPfdih3Do1zwCx131Ir7Ud12EOQFbMUDEF6hqIHNbQfnX2tWB5kpDtPr/UoENREsCu8FSR3Q+qFCVoPATVxWFTWJ3/qUdhIVuJnoHXjHu+YT8KHJyQaoKKVOcuSS5FLzXVuMZB03pLtBD1tKI4At2k/hLusZU2gBKMaYlLbYt2oMRukbnEqKHaOtSfljBu0gW+i2zz3J7DIYC2C+sifaIuIaVhiUT390SpFJYCN4IxM9VBAy2op4NBH4j2tHqzfBb359NH/VxFCFS1UR/W6qZayL4iepBbz0LOpRQkQCVvRwduzQHBeKFnMAjQ9pInots756S9sfF6YKe2Kv6obe4NU+Nd6NBLTVc68oA5iw+3U695I1RHiNLhzKPTtOIveTzuB0BS3HO66ZZp9gKD1nls9eTD/guvN3H9vs1LLi9YQK5SytXMO1tukBbZApnSw623iEkjH48BWzJeTrEC0VsCE+Tg5mPGdEVhhQa2+1W++WgMXqvn6TZQx7dOCD8BC/oQfTz8fXqeGukg/igMDbWZI43UyVN0NLuDWM2U7KaJrSBDe6D1W12mWvivMhIoE2yaXqVdH6FGrONDc3YRmBZGhg8JiDE33fuy+hEwzV2AxYwU+QWSQ77707taW1VTLNT+gMuxv+VpzbwkrcDyDfxLy149a82ymW6iyom4Di2K/+sHSW0gZxN1re5q4fFCnPjaWZEJJJ8UMmPtJG7mG3QEIQK5+IR/r6aCC8ob+K1Xz2NfFoDZGZstUHRdNuh8eAMdf0fRbNxlrMI9WDJCFGTQplnDV58g/QA6QEWQW2d8wuFKN2sZKeQ+5kvDUzMPtL8YCbpfKuAsC63WqWoYGRRYQr+LuxR52czf3PmA8xT+TxeuimDIWSV3VdGfrMpDAc2vFyhciBei0Qd6EHLitBMsiJiZB0U6FWkPxXtAup+kPsaHOQrR6OiSfZ/e4XgNqpry6rd62IVLsxB43FZdJ6/5A/QnZvSPoY+0neMhwj49tZ+pJUaflBWgH0Yt6/gNOR5baOsw5Wz/OUMLH6Ulhz61xI58VQb79tJMT+Pubp4KqoNTzGYZ5phpGgyzTgPU7P9JzQcFzSNyvgSRhpI5RQ7z7Hm1Csw7qow2zB9+NVwDihP5tblCZOkRug+jtoXNCFxqPIrLzxDcV0BPGYLPcnlF3iKMbfL6U2CMKUHaTANYQTw5/7gbMiTS0clewCMFD5Bls0iAp3bDnA0fW82dbj8nNuhCufAV97oEGGEuLUv4q3S3Ap5U8k6YO/DEbItNlFM6GiUYOr+f8dG696AJMHj/q/Ah1TKeg3VRZNSxU5iaGInm9LTQhw58rbXAOUgDuIgoN8kKjeH6fYP7fdHqjA31mGTB5dboJ3Pyt9OLQUmhbFWUAUzF+q2pGNQNTvMAPqKp5FtTTuQUtN/r7X+WzvHzGhHpbmDZ1Dds1XKqXZmkObkGZLWnXQnpDVlTBlq9nAe+8+x/Tchniz+V9O77O0+ggUr602Cs94/USuvggwnVtV5qulrel6UF0yHOMGMRHc8NYHReTuQJnj/RYT3uB9ew/GO6HCjDDN/4FX7tvE/T6fkjU2WI3zaPJ0XPM9BiJS01Wxw+DWibTNQfq49SsymKjc5W63FCcAjFOC+1T+LXuqp5FWvREgOG4FjyI+goSsvKwRwXuaEVObB4YWMoD0mnkUHs+XMHaV6lsGMerePWmcqUZltQt7qghb2MO4+U/caIXvaFPNKHO/AqbOBHXrPd/o46h242rkYw69GPV+Oct7IH/f+7EcL1H09WCj9Vt6bH1UG2qn7dt6LU7SIoZJZ6ux69b+ANzEDxA5YEKIEHbFPxVKQGRg1q6aCbNt2zN5UJZxPg9x4KiRD2SHWtCIuvoyzVSsjPBhWp4dpxNIDCTzhqfe5U9dpVYy2bVWMfqHBkoOEMc7MzEZDKhsLplBs0N07+8SAWuCX7TbNGmw1cjGMpLhouEDSi4r6aqQIkB44o1whGEitBHFI6zHnpQ3Xo98FayJitwfmdkdYaOmOvi6QhqTX/hPz0iHZhTjvd38lGq3nc0ckqYULyzi4WzsxKuqWdn6+nMwrp9o0pW8aH6b7OCIggjMUHVucYDzpX938B16VEvl7kHAaTHnhU2QsalEWxU+rgiaUtrUXFMKKTeHNDUDGZH51ITfxlifxsh0aMzD6iaIWmUPP1kO/fot9G5t4zut+CbOwUF6dlPpfTdkUPgNERdpmdXkivvs2k8VgrhI7bbBIOGoerb1MhRujy79U8vnYf6xTTGM2cuWkgWe8LfymCZdI4cErXkOT9c2d94tgH3fUZ/4aNZvTdz2bW85yOnPuOjYP6uzQgVxCa10LQ63xPJpSME5GHxOtcO/j/lmHzGXszcCD2i8/OjXATygj5GeazKlbiI5ntlMuUXSV5/MxA9+8O50Qh4MR8HTXCONMb2g+qqgeAdaR94CrG0wfMGcRrPovpoQ1aqf5pApi+TlT0u7jKGnUoYiATxcrNK7xoWx7Z0+ov7sXdBn0je1Pb+mCRl91jLJyAPt2F1Y1YDthX8ob9J0AZsPqKsrsQesqOFv0G2OjxK9gVSDwPj/+cyZIr9TihziAHd/lrN3iNMUDjhF6atITc2kmviVVxWFy+B2gNdJei8Aayb5Fwa8i3cLLRsrsKqWdZrD6eJIR5JjVN/zlZ6n1x4lPFmJbC8EEysNnRwQ/eKdz0sLH2tqbaaRpeIQWQCtnze0DKL+1Op/Nyxs9IzUXvzi/vfPOB44MRzRfJtPCQJ5BKpWI1+CCnf6T6wm9osMyRtGNPN+/RTLTanQr8VMpZND0NalO9TlCB5LFc9JzJCiR3AC/yibt/0WddAuYRGSJHcMDO0IRj1nHTOXgw/hlnSV94j9WsCfdwMh31ecrlgJWJF0vjN++nxG4hTTmMEU7D6IjT5M5+O6AJ4OQcTPZq7WDQPsCVuvHGn2GfxDZakrzKuh4I/FR3U0bzCyMg1eWZb6cqh1p8fJK1YiClVJvTou8lkaOtxjFxRGK5vs3hSNYgbvIwAh1COCu8FTTLDP5QTh0lq4fFQNtWXWVRqGzrJM9rUxtcCStKL7Orw7hOemS4KImS2xo0MmZRo8s38q1LLxyUJNoG/jgL/+T+kjD7aaX0MGYow3HmO2I4QAVAQ85APLonHdhBsalXzsPTIbP43R49OXk3HMD9n3CK65yD3vaAJWKxuC65XCyfgyQ3n40jx992SjY4TjVwX3mPX4AG2GT5y/TKXENpRrqCN6QkrTBrSD0SHws7Gab867GBM2Yp4dASr+eAo1PC2IVy+GYT3wt8WQHdTokFnkmpqj46O4/kknE0T5drLkAe0fbiF6+jSJFh5pAoDV3qOgpU122wLYsDrUGD0vGfd2+sJ3rXVk7LuuGB4FWxr8Q3l9QDK/8L7bRYm2YwKO0nbyEvifJoNFLkjRbjPt6xH1C/gzoClB87By8bqAQC0QLLFlgSBWYmF6lLiKtlVUIYlN6/Kc6tC13LOBIV/uVqrPp5KV6zC2HTcsUV5ry/6S0R/fCdjkBjyap7LqW0prSbyFzXE68XbYePd5/os8DYJHuc3E2OnVfjLmG/xW85qqgTEOx2y1JmVUtUK7xNdR1T9PrSuyEw/ZGLDYZDh8s+ASYa2REQUs1T2BGKEDhrKhUf59Pgfu7fadA8EynJkx6q/g2URx0yZ+wQ/ALUQMnOnDrYFb1q1TI9sc8onApmLfL02Mm/nMoLkUx1J51qcrC56ncfuz+ZlC0tianPe8gbzxo0hfu5eYTZgoBrhl+M4QSgmV1EhwlP/P7QeO3vIwqLSFUjuF/q4fyAwFYCzo8Kl58yj9UM0pMwsM4/BsRZV+KbddikNQOuUsNa2AkmZg3FOtlHXqULbJIclKAF59fAf4mo37LXeHmJmVBEZS2IX0OsWqm6L0GImopM2uy09tbRbfDjOOZ8koQLO7fWL7lt5XL09k+RmVLXXaDAWFMm5Y3yyRFEqX3VYuaqI29Y4fVnUiD062vyDrO6jr8fY5/uAULCFl1pb2HgJ5GV/QWz7oDzV1bFWxPMyh3kumxgNCSadyElvrYtS0hDMDhq6EjBZ+ZyRMuRGe7KBadd9sgn75rEGxlmoS1/R//Yw7O1IwzoYrc67x8hnbmC+2/n7WLPdvujstyILRe88l3x1bZQ0sfcZ0NPg5+NoCcQW3MQmw5UonZoLYeFwVAlw4zX6A3CX+AuWGwp5/GjQ8bfWrCWVwd8MtjEiYyRPWMHNqr2ucO0iSQhwwqapqSFheaq4TdcAsx1KZdj3sJ4dGl7oZRviiAOQuQ7KMxfgjSh0BkZrz/rlcOcR++3lp90/OfK+K7Zwojfz/iOt/3d5S6K9DQzevErhB6Z25FcekHWWOTUQe39XelH+LNp7L8lNqb5v/za1ytnB+ti2U/+vYyCCWQut7BuvfziHVl/KcRD0xgVD4jgch6cwj4GNJCvNnn0mJCMiy3FqpNT5C+xGsYFZLFHlImOezmuWKlvsNUJ9iMt3x/Vu1AGHU8YflwXRNQgtz7xQ6/zyysG9ZscIkCqcNScA0+Kyn+Tz2a1/pXf2NvwKVxFtWnCyMZyNa30678Q23h1rIMEn5774+v+2ggI15cfOQ8Cs1rBdgBroQfRKWQf8IVKPwVHd7PGuLxtl+YO8ZZUs3GAkEel4iyVjbn4pWgXgkz4enW76kp0ef5uvfponWV7js6u/ZvrEjncoDQp1xLY6osHhcZ3+3PDXiCSHdHMvNBI3gIxZ6TphAhFs+JbEVnXxscfLlxT/oDGKtqPVNZcK9dDU29qhLTsDFnSz9jM4NvwiCNr5C0fGCkxyCuFNG3HAq2lJNVDJfFEjZ1qR1fr5xH3pKdN+PZ2dVCYF+swftxW93WXw8iH6rT6tWRmtHBv0houlZOkJEWTntVYq4h6357h4M9iMRSu+eTORscz9lBDCbRTGqJjXKSNd1NorJpN/ak2nv4kH2wOxM5aoW1k1li/HpJC0F1qJEye+Wc4qdVqfH9TaJg93kxpAk1odZVNuHjeoBnjwDrf+pPntXr+yjk3OAv8afG4GubiPOP8Hmz61BKA5vNY8v2uvjtYyVt0ktkKaFs7IKks11ZBaQYr3wuGT3ImcpnVuWFqCbYVLdk4N04iQQ6+acaDg+smEw/Jtoou7TB7xKOm3c13lVg6HcVYkUxCu99MHToe5/A0IIPQzpmOZBgYj3e6g8mfh9ObbdE+VrWzqYkt0z731y6xRnkNJtdmHMUA1lHtQ0f2baDrVLQeD4/9iHp1Pj80yQzcmiKTkxQr4PPWJr1dX851P7chRb6bA36BvV3HER061cuz44zhRC9+welA6ZDTf4eUTIWZszeMDSh9R87mWIOBJxeGFlKbQB8vM395PcCMxCtC7Rc1GJIZ/kOi6VB1+c0Au3aEaOMxdwX1+Cv70dGG+nEW8582engiqYiSIpIeH36Bd0D2oxA6dVX1G3RvYapNX0ZVAbTvOn/5QzvgUP/QIgaiclzDiBN1Re1JRMAWaGCzOUZ5yzZ+XoMD0RqAmlgtFhc9zD1cyC6fxy9ttpBYYC4R7mP42aYhncNcPJwkkhACLDAOb5It9uzf0FL93hrSuWM66NGCnCa5C13KEuoGHI93RiyIj14Q2TuoeoJHk4Jq3u21yZ2t+2cSiIVX8PxUY2uHNkMuDhzjKq3RXXrqnQJzB9bi8gme+ezB+kEdtmRwV+2pSeOJvIKRzdcY5qsqVbk4fhbuy23zrTqYM1dpR9CfmCKaB/o0XypYpG4T5a+p3hMl+ETAzJ50nArSFynxiOqdSfmit5AT1JVKcxPo3HVkHwJkJZjx3ghVYJJDEWGCLyUmSaVBcyg+K/k6LXUn/9qEyD5uXchJx0UML2f6X+hzTAChGKBjkmVm6abdib55k5BPH9KRt9mJHeZST7l7m2JTSZhQ+oO1UfRwY18J7M7Q/cYT7E6hKNdyS2IPKiMew5TI7Wbqx1R6CxV70d4Ln1+gDJ/RWPpD/GBaZYjrqOi9LdapR1YRJy49cx6wyNn+UmYNJ7lW5tiCWMf8zNcdKTP4kLJwQBhqi/jCjv65Lz6ri6bwKcj7cx0bs6KhFGXFdlVFK/7ZvCuRUWWo3v/fuTRMERfPk8Ni3RPtbl1bWy13HrL/DXTE1ypTrmuj0Ir55mztyrNXy4BWREfvHuKU1a65n8aQ1i+Qrx+pyx2IDAvi7wkZ0LM0pF+FX7tyVF3SkfdGUV704gDv+dsKMKLispq/H8RiSjn0/ImeCHZ6G+lV0cQIwHwau1DnxDy/3SqDfaBPh02DnCgKt+diikYDgwDQNRkRM9anQoH4Rkvw3Jdmuhl2+/HbdYQPh9YM5zG0Y2Isqog/iUCs+RApnSBgsbtMxiXDczQbO32KYAVU6e0yO7cmpHhRSeCwtqoVG6UJoMTSxzlf0GPK81+L66xsjPvNMm6mVoy8yNOZwlOAstKd7PRPcDtHjDR1Ps/+Zn5WYEfYeN3fs0X3weCEd/UYvwiXbdCT0/0DuzDqMNVPjWZMid47QzEjV4wIetT/lhMwIasnf+33xbbrLsQujWvKu8VCzdsTqwuVbwUMQ8wd6aIveDTjGfpdHMlYPYh2TawnkQuPzgoQoqaYz4OIHHWpbUT5wXWfCckojp3ArXLdhTro5zEdmqv50mg+1dM6UwxSyMxxwRcQAg0YaUva+xTJcShqjwOW2b8hCvuJ0NaB3mmo8iBm+cUrBTAj+twANczx6LIXqMplpbofZj3dV+rMZkCEarOLqFjK7GnhQmQx4VvlB4g4GBjKr52cbj1m0mS7JJ7cIiWoiiXXSN9qHzRDcMHVFO+5Ctize0fCQxabnuDoaBdCKGE6v4My6IQPZCEIxrTMCSbR1FDJtheS+tKFPIRm6A42VXyeq3R3a9OG8FS6WGp6vhYWvBt/cvbJwJELo6AdhJg/cNgMavS1ORuC33UZtxyf5O/ddM6ZZq3xeQE5j6Iei8+AeUkMOxC/IKEgrx//ARlufZwPxkX1q8ezv4dBIJqIH58jKN45jiOZuXH4C0XHDs9Ek5QaThBS+y6N7v3WredcMkpowFwOslPPjT8pUhoKTGVOb4R6CG2EGZPqK3a6rX5Q4Vt7kTbP05gHpfSPbQBWagdYJYe213OoVcLjfcZ6m+89vOoR2n1Ohv2TjfRRuC/3Whx8Ic/kEKI/HkOmg8IgVoTMcrCDPgOgIn4yTYV63xclVHDBwfAWnRP/OT2km7CWvGLbqHmjltd7WYlrfXTckV2F9SFDmqDAJABQkQObXfAeN3aK6Ajixtj0d8v2gtQ3JkrPj8ad49isMU2kMWXMUgZEA8oay1zk3xLzTNZsdMS03C3lul6SDnRCwN9/9CoEibAUc+ZhbU7CrNh1iLIoGsgweZoz8cXIUKTIrOQP88Pm9JXapBBe72Hx3LLJdzBd9hEUXmrpEB+gXlN8Vd0KluykzvxmLkxcAwBfYN1LjfgZ+v1cUHuZLl2YRJj2BoGPFepKDCdNT94fTbkucQyn1Ld8RlMZfr9j1fc1TO0jJ3l5bLbl+PjLQ1Ids4A12P19Ol/tlUY1/bjY9LBAzXNjQxhICtUs0E3dWVBc5yce+/EO+f+LJdQgHA1zkdrPY3goSAlEy13AAgQes7qTmpe0P5OvcRrCQVdMHTTTM26iIpad12eBGy1nP714/SOrbI3vOWAwK6fZRnWTcUklopvxQR5Xc93ULXdrntZ1W/SCCimt5n5S9DUa0DmaOdi4sNfZtbqzdbPuJ/usslmx6kz9Elnmw+NPDzLOdJSFHjW7uaEdgaBSqreHegIMCoJ75+pyY3NDKWyY6uP5n0nUJL5UIFbMgK87kCTSM1geDF9n7K0kZ+MGMKjlaneNCzC50Io/KTX+7wlIR9oijCsVHFoZL21BGb9h4supPpbmGdXsB7D0S2qR39T+07BRnZolNuLubUQau7U+LZTrmWk6WjEWetYPWZfLAfJJgYSdK/4gcYs6HXifcz1V61TwJkfHngO1GszfeJPXSTtvOSLH5HHiBlrHSrnU4/OyhWYBZ3LHj6NUF1zzryOaDviB93eQmTe7OUNjwCw14pqzwonQBwv4uK2+MUPCCowXznrY5UP1h6NjRoNdhm92x38CYe5BgNOZjdxldmZfIhDoQWS2ZcGUnQgtHhC212mKAZgpXOcxufwYGUIxHGM/JlWImpzJYS+h+ROM1ErXQmmspkwe/SbSfktERsM7oII/vdcPdNF5WivgeE3EM+N+Q2ZKNQ56w0CDmXw8lHeb/AxjhX+q5o5ltjtTCM136lI19Wg203FHjvF4HQN8AipDD07FsIL4+R9X3kxpmLRrz6XEKfBhUO+0kZlqxNYJNCJMKdElVUp0Oo+2i9BlwmL5mVpoyDhbOnP1nNlsMKNUPsLy1N09DKnHdIinSrSaspjaTq+UWFwRRURraHlo19FZ+UgDY6siusRa/6fl6CY4Im3fZlNkSzRwsQiJQVqLQL2Qo/QOLL8OuasQ+rZGXRbrdZlDFb8meApmgM0eoX7pcFTcsDKvzcYv5PaF7CmAy5yD+TaunpGBDBSFRMDdCSu1SC2c2NLTd9hxCkU0swNEBu4VVIL5TusYi0wTm9EmGQ+IlQ1eKJ39Cn5dzEzFHSXXVlr7rpYZuytDSBEwPwhiltacNLh7tWix4KxJLUvCbNG6lZzYxOfj/VybLqra66bwHyL7J59IltkUsse3GQY5swafgLc46qvqdSC9yg2ndHP/35HReounk+YXtpL7rJy60VFmnY4P0l3SiWvV5jVEjysPEiKdlvE//gccYvsBcO/VcCnK/s7zVCz2lb8VfsAnWdVHgsxjv8oGf6IdKEO7NGXb6det9rTGzYaSjZH09ksGQUXQ5CR2V29U0IPS/RoV42Mtcsq8aR3tQvHc0OBbvQT4L2c/uumbqXa6UOqlW4Z7Ulc4mICox7We9cmY23T0ijHxToTlLqn9Jt+QRTmVe8uuGZtoV/cz/Ac5eXmfZqnT/ku+QTCxMDC22ZT2bdxMxnyASsvtkhGCmiHxlztk2Kyx5an4zrO/CTSXEaxPS3pSbJuKA1DOr/QnkKB3l+fTeS//5cYAanVTdc0Uk/DSee0Ej2fEZYN9FkNwxYfWeVN+196+wAiH6HUqtisv27CJsAfQP0ZVTGmjf6UfiNE8ZOvihTKUVrSMLKr5odooVw4Vgf5G/JzKlP4g5XHtYC73kgWUuZkY/Rdj+pJnGomcK5dvLp6FNB27Q3oZ1NzfUbRBaBEcAeD3x//aahHg2vYymZQeCaxAZh1JW7aOEZjTo+C1QASZa9xKqRqWUV9ftbeeSuzlZ0vb7RjM9N/iODv/JQ0TjNoMT3V5eD7qa/rxweFeQChSVhsv8u41oGQfu/nKA785xPM2bKFkEdU/GTGtn0LHTKBcXJi1g6bQwlOgNVAIqOsiqdn6sM0p16AZ1Gfb0iWGK3QN06DU9tim9OF+ilpAkRJ0qIkk6+7rg7ehqKzTmPc7a5pw8+7eLN2mr+WLsYBJIywAwiVxx0aPtAyGLCth3VvhPJPqcemPcBu8l5KNyj/LORTwVQUg9RZklgFJs+1rXIfk4UtMut8XXAe1dm2naAEVwdxaRSu87CPxDhAm2pMegZPx0CDF2HZkoSSDkbaFG9XDNeYGG7iQy6BaRvqMsYXIP0Kw0qxohqvppfNHiSmdetdrFN6mB8ZPbnLwFCvSdW715XaRFVCm6xxvyEo1RiEK/InJj60DdP5eHuKXh1vXHpBNE1rU2IbFqt6tC870zAFLAoQOfiiLq3WmFn/R0tyyF+jiDfb7wkFZ29UBrDKutO/O96teXwkm02SuO7Zo4vvS4O7uG9Ouq4YUNsTfiYTjqdYelHTT4zx9XB1WqKgF8QX5Vs8B6zTNJIK1Mo0SufcTkR3ONbX+czzR76zqnTmJI062qSI2iX9fyhbsWjdrnX9tDoxWHGnoqSUSHB7bPAZJe02+5bBU6Yxvr2wX/x2QAt8BICv9/rVVWhBPBR6OEkOop/FqKjgAAAAAA3CBW5Bd8ncoAAcWFAYDQBU0prVOxxGf7AgAAAAAEWVo=\" | base64 -d > atcoder.tar.xz && tar -Jxvf atcoder.tar.xz")


const
  DO_CHECK = true
  DEBUG = true
  DO_TEST = false
  USE_DEFAULT_TABLE = true

# see https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/extra/header/chaemon_header.nim
include atcoder/extra/header/chaemon_header


# see https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/modint.nim
import atcoder/modint

const MOD = 998244353
type mint = modint998244353

# see https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/extra/math/matrix.nim
import atcoder/extra/math/matrix

# see https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/extra/math/combination.nim
import atcoder/extra/math/combination


type MT = StaticMatrixType(mint)

solveProc solve(N:int, D:int):
  # b[0]: 最初が白
  # b[1]: 最初が黒
  var ans = mint(0)
  for n in 0 .. D + 1:
    # すべての辺で白い石がn個
    let
      A = MT.init([
        [mint.C(D - 1, n),     mint.C(D - 1, n - 1)], 
        [mint.C(D - 1, n - 1), mint.C(D - 1, n - 2)]])
    for i in 0..1:
      var b = MT.initVector([0, 0])
      b[i] = 1
      b = A^N * b
      ans += b[i]
  echo ans

when not DO_TEST:
  var N = nextInt()
  var D = nextInt()
  solve(N, D)
else:
  discard
0