結果

問題 No.1078 I love Matrix Construction
ユーザー miyo2580
提出日時 2022-08-09 01:03:16
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 53 ms / 2,000 ms
コード長 5,033 bytes
コンパイル時間 2,585 ms
コンパイル使用メモリ 214,736 KB
最終ジャッジ日時 2025-01-30 19:35:21
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define repd(i,a,b) for (ll i=(a);i<(b);i++)
#define rep(i,n) repd(i,0,n)
#define all(x) (x).begin(),(x).end()
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
typedef long long ll;
typedef pair<ll,ll> P;
typedef vector<ll> vec;
using Graph = vector<vector<ll>>;
const long long INF = 1LL<<60;
const long long MOD = 1000000007;
//https://nyaannyaan.github.io/library/math/two-sat.hpp.html
namespace TwoSatImpl {
namespace internal {
template <class E>
struct csr {
vector<int> start;
vector<E> elist;
csr(int n, const vector<pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
pair<int, vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = min(low[v], low[to]);
} else {
low[v] = min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
vector<vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
vector<vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
void add_node_size(int m) { _n += m; }
int size() { return _n; }
private:
int _n;
struct edge {
int to;
};
vector<pair<int, edge>> edges;
};
} // namespace internal
struct two_sat {
public:
two_sat() : _n(0), built(false), scc(0) {}
two_sat(int n) : _n(n), built(false), scc(2 * n) {}
int add_var() {
scc.add_node_size(2);
return _n++;
}
// (not i) ~i
void add_clause(int i, int j) {
i = max(2 * i, -1 - 2 * i);
j = max(2 * j, -1 - 2 * j);
assert(0 <= i && i < 2 * _n);
assert(0 <= j && j < 2 * _n);
scc.add_edge(i, j ^ 1);
scc.add_edge(j, i ^ 1);
}
void if_then(int i, int j) { add_clause(~i, j); }
void set_val(int i) { add_clause(i, i); }
// (not i) ~i
void at_most_one(const vector<int>& nodes) {
if ((int)nodes.size() <= 1) return;
int cur = ~nodes[0];
for (int i = 2; i < (int)nodes.size(); i++) {
int nxt = add_var(), n_i = ~nodes[i];
add_clause(cur, n_i);
add_clause(cur, nxt);
add_clause(n_i, nxt);
cur = ~nxt;
}
add_clause(cur, ~nodes[1]);
}
bool satisfiable() {
_answer.resize(_n);
built = true;
auto id = scc.scc_ids().second;
for (int i = 0; i < _n; i++) {
if (id[2 * i] == id[2 * i + 1]) {
_answer.clear();
return false;
}
_answer[i] = id[2 * i] < id[2 * i + 1];
}
return true;
}
vector<bool> answer() {
if (!built) satisfiable();
return _answer;
}
private:
int _n;
vector<bool> _answer;
bool built;
internal::scc_graph scc;
};
} // namespace TwoSatImpl
using TwoSatImpl::two_sat;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
ll n;cin>>n;
vec s(n),t(n),u(n);
rep(i,n)cin>>s[i];
rep(i,n)cin>>t[i];
rep(i,n)cin>>u[i];
rep(i,n){s[i]--;t[i]--;}
two_sat ts(n*n);
rep(i,n)rep(j,n){
ll x=s[i]*n+j;
ll y=j*n+t[i];
if(u[i]==0){
ts.add_clause(x,y);
}
if(u[i]==1){
ts.add_clause(~x,y);
}
if(u[i]==2){
ts.add_clause(x,~y);
}
if(u[i]==3){
ts.add_clause(~x,~y);
}
}
if(ts.satisfiable()){
auto v=ts.answer();
rep(i,n)rep(j,n){
ll x=i*n+j;
if(v[x])cout<<1;
else cout<<0;
if(j==n-1)cout<<endl;
else cout<<' ';
}
}
else cout<<-1<<endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0