結果
問題 | No.2036 Max Middle |
ユーザー | tokusakurai |
提出日時 | 2022-08-12 21:44:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 65 ms / 2,000 ms |
コード長 | 6,005 bytes |
コンパイル時間 | 2,398 ms |
コンパイル使用メモリ | 215,164 KB |
実行使用メモリ | 9,472 KB |
最終ジャッジ日時 | 2024-09-23 01:48:12 |
合計ジャッジ時間 | 3,892 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 36 ms
6,940 KB |
testcase_09 | AC | 60 ms
8,960 KB |
testcase_10 | AC | 63 ms
9,088 KB |
testcase_11 | AC | 47 ms
9,344 KB |
testcase_12 | AC | 44 ms
9,344 KB |
testcase_13 | AC | 65 ms
9,472 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 59 ms
9,216 KB |
testcase_17 | AC | 48 ms
9,216 KB |
testcase_18 | AC | 46 ms
9,216 KB |
testcase_19 | AC | 44 ms
9,216 KB |
testcase_20 | AC | 59 ms
9,216 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= l; i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template <typename T> struct Binary_Indexed_Tree { vector<T> bit; const int n; Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) { bit.resize(n + 1); copy(begin(v), end(v), begin(bit) + 1); for (int a = 2; a <= n; a <<= 1) { for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2]; } } Binary_Indexed_Tree(int n, const T &x) : Binary_Indexed_Tree(vector<T>(n, x)) {} void add(int i, const T &x) { for (i++; i <= n; i += (i & -i)) bit[i] += x; } void change(int i, const T &x) { add(i, x - query(i, i + 1)); } T sum(int i) const { i = min(i, n); T ret = 0; for (; i > 0; i -= (i & -i)) ret += bit[i]; return ret; } T query(int l, int r) const { if (l >= r) return 0; return sum(r) - sum(l); } T operator[](int i) const { return query(i, i + 1); } // v[0]+...+v[r] >= x を満たす最小の r (なければ n) int lower_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)]; } return ret; } // v[0]+...+v[r] > x を満たす最小の r (なければ n) int upper_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)]; } return ret; } }; template <typename T> long long inversion_number(const vector<T> &a) { int n = a.size(); vector<int> v(n); iota(begin(v), end(v), 0); sort(begin(v), end(v), [&](int i, int j) { if (a[i] != a[j]) return a[i] < a[j]; return i < j; }); Binary_Indexed_Tree<int> bit(n, 0); long long ret = 0; for (int i = 0; i < n; i++) { ret += bit.query(v[i] + 1, n); bit.add(v[i], 1); } return ret; } template <typename T> long long inversion_number(const vector<T> &a, const vector<T> &b) { // a を b に変換するのに必要な最小バブルソート回数 int n = a.size(); assert(b.size() == n); vector<int> u(n), v(n); iota(begin(u), end(u), 0); sort(begin(u), end(u), [&](int i, int j) { if (a[i] != a[j]) return a[i] < a[j]; return i < j; }); iota(begin(v), end(v), 0); sort(begin(v), end(v), [&](int i, int j) { if (b[i] != b[j]) return b[i] < b[j]; return i < j; }); vector<int> w(n); for (int i = 0; i < n; i++) { if (a[u[i]] != b[v[i]]) return -1; w[v[i]] = u[i]; } Binary_Indexed_Tree<int> bit(n, 0); long long ret = 0; for (int i = 0; i < n; i++) { ret += bit.query(w[i] + 1, n); bit.add(w[i], 1); } return ret; } int main() { int N; cin >> N; vector<int> a(N); rep(i, N) cin >> a[i]; vector<int> c(N - 1); rep(i, N - 1) c[i] = (a[i] > a[i + 1] ? -1 : 1); auto b = c; sort(all(b)); cout << inversion_number(b, c) << '\n'; }