結果

問題 No.1078 I love Matrix Construction
ユーザー tokusakuraitokusakurai
提出日時 2022-08-13 15:33:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 286 ms / 2,000 ms
コード長 5,755 bytes
コンパイル時間 2,736 ms
コンパイル使用メモリ 219,760 KB
実行使用メモリ 68,204 KB
最終ジャッジ日時 2024-09-24 18:48:30
合計ジャッジ時間 7,645 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 27 ms
12,648 KB
testcase_03 AC 89 ms
28,028 KB
testcase_04 AC 140 ms
37,672 KB
testcase_05 AC 115 ms
31,888 KB
testcase_06 AC 26 ms
12,332 KB
testcase_07 AC 10 ms
6,944 KB
testcase_08 AC 112 ms
31,824 KB
testcase_09 AC 5 ms
6,940 KB
testcase_10 AC 286 ms
68,204 KB
testcase_11 AC 137 ms
39,512 KB
testcase_12 AC 226 ms
57,040 KB
testcase_13 AC 252 ms
63,824 KB
testcase_14 AC 169 ms
45,176 KB
testcase_15 AC 247 ms
60,816 KB
testcase_16 AC 8 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 20 ms
10,240 KB
testcase_19 AC 54 ms
19,012 KB
testcase_20 AC 45 ms
18,720 KB
testcase_21 AC 3 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

template <bool directed = true>
struct Graph {
    struct edge {
        int to, id;
        edge(int to, int id) : to(to), id(id) {}
    };

    vector<vector<edge>> es;
    const int n;
    int m;

    Graph(int n) : es(n), n(n), m(0) {}

    void add_edge(int from, int to) {
        es[from].emplace_back(to, m);
        if (!directed) es[to].emplace_back(from, m);
        m++;
    }
};

template <bool directed = true>
struct Strongly_Connected_Components {
    struct edge {
        int to, id;
        edge(int to, int id) : to(to), id(id) {}
    };

    vector<vector<edge>> es, rs;
    vector<int> vs;
    vector<int> comp;
    const int n;
    int m;

    Strongly_Connected_Components(int n) : es(n), rs(n), comp(n), n(n), m(0) {}

    void add_edge(int from, int to) {
        es[from].emplace_back(to, m), rs[to].emplace_back(from, m);
        if (!directed) es[to].emplace_back(from, m), rs[from].emplace_back(to, m);
        m++;
    }

    void _dfs(int now) {
        if (comp[now] != -1) return;
        comp[now] = 1;
        for (auto &e : es[now]) _dfs(e.to);
        vs.push_back(now);
    }

    void _rdfs(int now, int col) {
        if (comp[now] != -1) return;
        comp[now] = col;
        for (auto &e : rs[now]) _rdfs(e.to, col);
    }

    Graph<true> decompose() {
        fill(begin(comp), end(comp), -1);
        for (int i = 0; i < n; i++) {
            if (comp[i] == -1) _dfs(i);
        }
        fill(begin(comp), end(comp), -1);
        reverse(begin(vs), end(vs));
        int cnt = 0;
        for (auto &e : vs) {
            if (comp[e] == -1) _rdfs(e, cnt++);
        }
        Graph<true> G(cnt);
        for (int i = 0; i < n; i++) {
            for (auto &e : es[i]) {
                int u = comp[i], v = comp[e.to];
                if (u != v) G.add_edge(u, v);
            }
        }
        return G;
    }

    int operator[](int k) const { return comp[k]; }
};

int main() {
    int N;
    cin >> N;
    int M = N * N;

    Strongly_Connected_Components G(M * 2);

    vector<int> S(N), T(N), U(N);
    rep(i, N) cin >> S[i];
    rep(i, N) cin >> T[i];
    rep(i, N) cin >> U[i];

    rep(i, N) {
        S[i]--, T[i]--;
        int x = flg(U[i], 0), y = flg(U[i], 1);
        rep(j, N) {
            int p = N * S[i] + j, q = N * j + T[i];
            G.add_edge(p + x * M, q + (y ^ 1) * M);
            G.add_edge(q + y * M, p + (x ^ 1) * M);
        }
    }

    G.decompose();

    vector<vector<int>> a(N, vector<int>(N, -1));
    rep(i, N) rep(j, N) {
        int x = N * i + j;
        if (G[x] == G[M + x]) {
            cout << "-1\n";
            return 0;
        }
        a[i][j] = (G[x] < G[M + x] ? 1 : 0);
    }

    rep(i, N) {
        rep(j, N) {
            int tmp = a[S[i]][j] + a[j][T[i]] * 2;
            assert(tmp != U[i]);
        }
    }

    rep(i, N) print(a[i]);
}
0