結果

問題 No.686 Uncertain LIS
ユーザー maspymaspy
提出日時 2022-08-14 05:11:12
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 20,669 bytes
コンパイル時間 2,453 ms
コンパイル使用メモリ 216,840 KB
実行使用メモリ 13,164 KB
最終ジャッジ日時 2024-09-25 07:20:56
合計ジャッジ時間 24,703 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
9,588 KB
testcase_01 AC 5 ms
9,472 KB
testcase_02 AC 4 ms
8,476 KB
testcase_03 AC 5 ms
7,488 KB
testcase_04 AC 5 ms
7,560 KB
testcase_05 AC 6 ms
7,704 KB
testcase_06 AC 5 ms
8,912 KB
testcase_07 AC 4 ms
7,880 KB
testcase_08 AC 7 ms
9,216 KB
testcase_09 TLE -
testcase_10 TLE -
testcase_11 AC 1,411 ms
10,576 KB
testcase_12 AC 72 ms
7,772 KB
testcase_13 AC 778 ms
10,332 KB
testcase_14 AC 253 ms
9,800 KB
testcase_15 AC 192 ms
8,860 KB
testcase_16 AC 391 ms
10,984 KB
testcase_17 TLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 AC 492 ms
12,628 KB
testcase_21 AC 487 ms
11,680 KB
testcase_22 AC 228 ms
12,120 KB
testcase_23 AC 229 ms
11,244 KB
testcase_24 TLE -
testcase_25 TLE -
testcase_26 AC 480 ms
12,208 KB
testcase_27 TLE -
testcase_28 TLE -
testcase_29 TLE -
testcase_30 TLE -
testcase_31 AC 4 ms
8,680 KB
testcase_32 TLE -
testcase_33 AC 450 ms
12,636 KB
testcase_34 TLE -
testcase_35 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

ll SUM(vector<int> &A) {
  ll sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

template <typename T>
T SUM(vector<T> &A) {
  T sum = T(0);
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

ll binary_search(function<bool(ll)> check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    if (check(x))
      ok = x;
    else
      ng = x;
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    if (check(x)) {
      ok = x;
    } else {
      ng = x;
    }
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vi s_to_vi(const string &S, char first_char) {
  vi A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T>
vector<T> cumsum(vector<T> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

template <typename T>
vector<int> argsort(const vector<T> &A) {
  // stable
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "/home/maspy/compro/library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail

template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <class T, is_modint_t<T> * = nullptr>
  bool read_single(T &ref) {
    long long val = 0;
    bool f = read_single(val);
    ref = T(val);
    return f;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <class A, class B, class C>
  bool read_single(tuple<A, B, C> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)));
  }
  template <class A, class B, class C, class D>
  bool read_single(tuple<A, B, C, D> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)) && read_single(get<3>(p)));
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <class T, is_modint_t<T> * = nullptr>
  void write(T &ref) {
    write(ref.val);
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <class A, class B, class C>
  void write(const tuple<A, B, C> &val) {
    auto &[a, b, c] = val;
    write(a), write(' '), write(b), write(' '), write(c);
  }
  template <class A, class B, class C, class D>
  void write(const tuple<A, B, C, D> &val) {
    auto &[a, b, c, d] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
  }
  template <class A, class B, class C, class D, class E>
  void write(const tuple<A, B, C, D, E> &val) {
    auto &[a, b, c, d, e] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
  }
  template <class A, class B, class C, class D, class E, class F>
  void write(const tuple<A, B, C, D, E, F> &val) {
    auto &[a, b, c, d, e, f] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if(val < 0){
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if(negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)      \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/alg/group_add.hpp"

template <typename E>
struct Group_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/monoid_max.hpp"
template <class X>
struct Monoid_Max {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
  static constexpr X unit() { return numeric_limits<X>::lowest(); }
  static constexpr bool commute = true;
};
#line 3 "/home/maspy/compro/library/alg/lazy_max_add.hpp"

template <typename E>
struct Lazy_Max_Add {
  using MX = Monoid_Max<E>;
  using MA = Group_Add<E>;
  using X_structure = MX;
  using A_structure = MA;
  using X = typename MX::value_type;
  using A = typename MA::value_type;
  static constexpr X act(const X &x, const A &a) {
    if (x == numeric_limits<E>::lowest()) return x;
    return x + a;
  }
};
#line 1 "/home/maspy/compro/library/bbst/rbst_lazy.hpp"

// reverse はとりあえず、Monoid_X の可換性を仮定している!
template <typename Lazy, int NODES = 1'000'000>
struct RBST_Lazy {
  using Monoid_X = typename Lazy::X_structure;
  using Monoid_A = typename Lazy::A_structure;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;

  struct Node {
    Node *l, *r;
    X x, prod;
    A a;
    int size;
    bool rev;
    bool propagated;
  };

  Node *pool;
  int pid;

  RBST_Lazy() : pid(0) { pool = new Node[NODES]; }

  Node *new_node(const X &x) {
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = x;
    pool[pid].prod = x;
    pool[pid].a = Monoid_A::unit();
    pool[pid].size = 1;
    pool[pid].rev = 0;
    pool[pid].propagated = 1;
    return &(pool[pid++]);
  }

  Node *new_node(const vc<X> &dat) {
    auto dfs = [&](auto &dfs, int l, int r) -> Node * {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      int m = (l + r) / 2;
      Node *l_root = dfs(dfs, l, m);
      Node *r_root = dfs(dfs, m + 1, r);
      Node *root = new_node(dat[m]);
      root->l = l_root, root->r = r_root;
      update(root);
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  // 左に右をマージ
  void merge(Node *&root, Node *r_root) {
    root = merge_rec(root, r_root);
    return;
  }

  // 左右に分けて、root を左側に変更。右側を return する。
  Node *split(Node *&root, int k) {
    if (!root) assert(k == 0);
    if (root) assert(0 <= k && k <= root->size);
    auto [nl, nr] = split_rec(root, k);
    root = nl;
    return nr;
  }

  X prod(Node *&root, int l, int r) {
    assert(0 <= l && l <= r && r <= root->size);
    if (l == r) return Monoid_X::unit();
    Node *r_root = split(root, r);
    Node *m_root = split(root, l);
    X res = m_root->prod;
    merge(root, m_root);
    merge(root, r_root);
    return res;
  }

  void reverse(Node *&root, int l, int r) {
    assert(Monoid_X::commute);
    assert(0 <= l && l <= r && r <= root->size);
    if (r - l <= 1) return;
    Node *r_root = split(root, r);
    Node *m_root = split(root, l);
    m_root->rev ^= 1;
    prop(m_root);
    update(m_root);
    merge(root, m_root);
    merge(root, r_root);
  }

  void apply(Node *&root, int l, int r, const A &a) {
    assert(0 <= l && l <= r && r <= root->size);
    if (l == r) return;
    Node *r_root = split(root, r);
    Node *m_root = split(root, l);
    m_root->x = Lazy::act(m_root->x, a);
    m_root->prod = Lazy::act(m_root->prod, a);
    m_root->a = Monoid_A::op(m_root->a, a);
    m_root->propagated = 0;
    prop(m_root);
    update(m_root);
    merge(root, m_root);
    merge(root, r_root);
  }

  // root の k 番目に n を挿入する
  void insert(Node *&root, int k, Node *n) {
    if (!root) {
      assert(k == 0);
      root = n;
      return;
    }
    assert(0 <= k && k <= root->size);
    auto r_root = split(root, k);
    merge(root, n);
    merge(root, r_root);
  }

  void insert(Node *&root, int k, const X &x) { insert(root, k, new_node(x)); }

  // root から k 番目を削除。削除したノードをかえす
  Node *erase(Node *&root, int k) {
    assert(0 <= k && k < root->size);
    auto nr = split(root, k + 1);
    auto nm = split(root, k);
    merge(root, nr);
    return nm;
  }

  void debug(Node *root) {
    print("RBST");
    string s;
    auto dfs = [&](auto &dfs, Node *n) -> void {
      if (!n) return;
      s += "l";
      dfs(dfs, n->l);
      s.pop_back();
      print(s, "size", n->size, "x", n->x, "prod", n->prod, "apply", n->a);
      s += "r";
      dfs(dfs, n->r);
      s.pop_back();
    };
    dfs(dfs, root);
  }

private:
  inline int xor128() {
    static int x = 123456789;
    static int y = 362436069;
    static int z = 521288629;
    static int w = 88675123;
    int t;

    t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
  }

  void prop(Node *c) {
    if (!c->propagated) {
      if (c->l) {
        c->l->x = Lazy::act(c->l->x, c->a);
        c->l->prod = Lazy::act(c->l->prod, c->a);
        c->l->a = Monoid_A::op(c->l->a, c->a);
        c->l->propagated = 0;
      }
      if (c->r) {
        c->r->x = Lazy::act(c->r->x, c->a);
        c->r->prod = Lazy::act(c->r->prod, c->a);
        c->r->a = Monoid_A::op(c->r->a, c->a);
        c->r->propagated = 0;
      }
      c->a = Monoid_A::unit();
      c->propagated = 1;
    }
    if (c->rev) {
      swap(c->l, c->r);
      if (c->l) c->l->rev ^= 1;
      if (c->r) c->r->rev ^= 1;
      c->rev = 0;
    }
  }

  void update(Node *c) {
    c->size = 1;
    c->prod = c->x;
    if (c->l) {
      c->size += c->l->size;
      c->prod = Monoid_X::op(c->l->prod, c->prod);
    }
    if (c->r) {
      c->size += c->r->size;
      c->prod = Monoid_X::op(c->prod, c->r->prod);
    }
  }

  Node *merge_rec(Node *l_root, Node *r_root) {
    if (!l_root) return r_root;
    if (!r_root) return l_root;
    int sl = l_root->size, sr = r_root->size;
    if (xor128() % (sl + sr) < sl) {
      prop(l_root);
      l_root->r = merge_rec(l_root->r, r_root);
      update(l_root);
      return l_root;
    }
    prop(r_root);
    r_root->l = merge_rec(l_root, r_root->l);
    update(r_root);
    return r_root;
  }

  pair<Node *, Node *> split_rec(Node *root, int k) {
    if (!root) return {nullptr, nullptr};
    prop(root);
    int ls = (root->l ? root->l->size : 0);
    if (k <= ls) {
      auto [nl, nr] = split_rec(root->l, k);
      root->l = nr;
      update(root);
      return {nl, root};
    }
    auto [nl, nr] = split_rec(root->r, k - (1 + ls));
    root->r = nl;
    update(root);
    return {root, nr};
  }
};
#line 5 "main.cpp"

void solve() {
  LL(N);
  ll LIM = 100'010;
  using Lazy = Lazy_Max_Add<int>;
  vc<int> dp(LIM);
  RBST_Lazy<Lazy> seg;
  auto root = seg.new_node(dp);

  FOR(N) {
    LL(L, R);
    {
      int a = seg.prod(root, R, R + 1);
      int b = seg.prod(root, R - 1, R);
      if (a != b) {
        --R;
      } else {
        auto check = [&](int k) -> bool {
          if (k <= R + 1) return true;
          if (k >= LIM) return false;
          return seg.prod(root, R, k) == a;
        };
        int k = binary_search(check, R, LIM);
        R = k - 1;
      }
    }
    if (L > R) continue;
    seg.apply(root, L, R, 1);
    auto d = seg.split(root, R + 1);
    auto c = seg.split(root, R);
    auto b = seg.split(root, L);
    int x = seg.prod(root, L - 1, L);
    seg.merge(root, seg.new_node(x + 1));
    seg.merge(root, b);
    seg.merge(root, d);
  }

  print(seg.prod(root, 0, LIM));
}

signed main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  cout << setprecision(15);

  ll T = 1;
  // LL(T);
  FOR(T) solve();

  return 0;
}
0