結果
| 問題 | No.2075 GCD Subsequence | 
| コンテスト | |
| ユーザー |  taiga0629kyopro | 
| 提出日時 | 2022-08-19 20:08:38 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                RE
                                 
                            (最新) 
                                AC
                                 
                            (最初) | 
| 実行時間 | - | 
| コード長 | 3,183 bytes | 
| コンパイル時間 | 445 ms | 
| コンパイル使用メモリ | 82,432 KB | 
| 実行使用メモリ | 132,608 KB | 
| 最終ジャッジ日時 | 2024-10-08 11:47:31 | 
| 合計ジャッジ時間 | 18,432 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | WA * 2 RE * 26 | 
ソースコード
from random import shuffle,randrange
class primes():
    def __init__(self, n):
        self.prime_num = n
        self.min_prime = [-1] * (self.prime_num + 1)  # 2以上の自然数に対して最小の素因数を表す
        self.min_prime[0] = 0
        self.min_prime[1] = 1
        i = 2
        self.prime = []
        self.memo_prifac = {}
        while i <= self.prime_num:
            if self.min_prime[i] == -1:
                self.min_prime[i] = i
                self.prime.append(i)
            for j in self.prime:
                if i * j > self.prime_num or j > self.min_prime[i]: break
                self.min_prime[j * i] = j
            i += 1
    def prifac(self, n):
        # 素因数分解した結果を返す
        if n in self.memo_prifac:
            return self.memo_prifac[n]
        res = {}
        x = n
        while x > 1:
            p = self.min_prime[x]
            if p in res:
                res[p] += 1
            else:
                res[p] = 1
            x //= p
        # self.memo_prifac[n] = res  #場合によってはこの行を消すと高速化
        return res
    def divisors(self, n):
        # 約数列挙 メモした方がいいかも
        if n== 1: return [1]
        prf = self.prifac(n)
        keys = [key for key in prf]
        def divsearch(i):
            if i == len(keys) - 1:
                return [keys[i] ** j for j in range(prf[keys[i]] + 1)]
            else:
                res = []
                subres = divsearch(i + 1)
                p = keys[i]
                for j in range(prf[p] + 1):
                    for node in subres:
                        res.append(node * p ** j)
                return res
        return divsearch(0)
pri=primes(10**6+100)
u=[0]*(10**6+100)
u[1]=1
for x in range(2,10**6+10):
    u[x]=1
    d=pri.prifac(x)
    for p in d:
        if d[p]>=2:u[x]=0
        u[x]*=-1
from math import gcd
mod=998244353
def naive(n,p):
    ans=0
    for bit in range(1,2**n):
        x=[]
        for i in range(n):
            if (bit>>i)&1:x.append(p[i])
        k=len(x)
        flag=1
        for i in range(k-1):
            if gcd(x[i],x[i+1])==1:flag=0
        ans+=flag
    return ans%mod
def sol1(n,P):
    p=[0]+P[:]
    dp=[0]*(n+1)
    for i in range(1,n+1):
        res=0
        for j in range(1,n+1):
            if gcd(p[i],j)==1:res+=dp[j]
        dp[p[i]]=sum(dp)+1-res
        dp[p[i]]%=mod
    return sum(dp)%mod
def sol2(n,P):
    p=[0]+P[:]
    dp=[0]*(n+1)
    g=[0]*(n+1)
    sumdp=0
    for i in range(1,n+1):
        f1=0
        div=[]
        for m in pri.divisors(p[i]):div.append(m)
        for m in div:
            f1+=u[m]*g[m]
        dp[p[i]]=sumdp+1-f1
        dp[p[i]]%=mod
        sumdp+=dp[p[i]]
        sumdp%=mod
        for m in div:
            g[m]+=dp[p[i]]
            g[m]%=mod
    return sum(dp)%mod
n=int(input())
p=list(map(int,input().split()))
print(sol2(n,p))
cnt=0
while 0:
    cnt+=1
    print(cnt)
    n=randrange(1,100)
    p=[i+1 for i in range(n)]
    shuffle(p)
    #ansn=naive(n,p)
    ans1=sol1(n,p)
    ans2=sol2(n,p)
    if ans1!=ans2:
        print(n)
        print(*p)
        exit()
            
            
            
        