結果
| 問題 |
No.2043 Ohuton and Makura
|
| コンテスト | |
| ユーザー |
RedSpica
|
| 提出日時 | 2022-08-20 03:57:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 13,096 bytes |
| コンパイル時間 | 1,637 ms |
| コンパイル使用メモリ | 130,548 KB |
| 最終ジャッジ日時 | 2025-01-31 01:54:35 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 11 TLE * 7 |
ソースコード
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<tuple>
#include<vector>
#include<cassert>
#include<cstdlib>
#include<cstdint>
#include<stdio.h>
#include<cmath>
#include<limits>
#include<iomanip>
#include<ctime>
#include<climits>
#include<random>
#include<queue>
#include<deque>
#include<map>
#include<time.h>
#include<set>
using namespace std;
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
}
template <class T> using V = vector<T>;
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const long long INF = 1LL << 60;
const double pi=acos(-1);
using ll = long long;
using vll = V<ll>;
using vvll = V<V<ll>>;
using vpll =V<pair<ll,ll>>;
using graph = V<V<ll>>;
using mp = map<ll,ll>;
#define FOR(i,a,b) for(ll i=(a);i<(b);i++)
#define bgn begin()
#define en end()
#define SORT(a) sort((a).begin(),(a).end())
#define REV(a) reverse((a).bgn,(a).en)
#define gcd(a,b) __gcd(a,b)
#define ALL(a) (a).begin(),(a).end()
template<typename T>
std::vector<T> make_vec(size_t n){
return std::vector<T>(n);
}
template<typename T, class... Args>
auto make_vec(size_t n, Args... args){
return std::vector<decltype(make_vec<T>(args...))>(n,make_vec<T>(args...));
}
map<ll,ll> compress(vector<ll> A){
vector<ll> B=A;
sort(B.begin(), B.end());
B.erase(unique(B.begin(), B.end()), B.end());
map<ll,ll> res;
for(ll i=0;i<B.size();i++){
res[B[i]]=i;
}
return res;
}
const int MAX = 5100000;
// change
//const int MOD=1000000007;
const int MOD=998244353;
//long long fac[MAX], finv[MAX], inv[MAX];
/*
void comuse() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
ll combi(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll perm(int n,int k){
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac[n] * (finv[k] % MOD) % MOD;
}
*/
ll modpow(ll a,ll n,ll mod){
ll ans=1;
while(n>0){
if(n&1){
ans=ans*a%mod;
}
a=a*a%mod;
n/=2;
}
return ans;
}
ll POW(ll a,ll n){
ll ans=1;
while(n>0){
if(n&1){
ans=ans*a;
}
a=a*a;
n/=2;
}
return ans;
}
ll modinv(ll a, ll mod) {
return modpow(a, mod - 2, mod);
}
ll modcombi(int n,int k,int mod){
ll ans=1;
for(ll i=n;i>n-k;i--){
ans*=i;
ans%=mod;
}
for(ll i=1;i<=k;i++){
ans*=modinv(i,mod);
ans%=mod;
}
return ans;
}
vll div(ll n){
vll ret(0);
for(ll i=1;i*i<=n;i++){
if(n%i==0){
ret.push_back(i);
if(i*i!=n){
ret.push_back(n/i);
}
}
}
SORT(ret);
return (ret);
}
bool compare_by_sec(pair<ll,ll> A,pair<ll,ll> B){
if(A.first==B.first){
return A.second>B.second;
}
else{
return A.first<B.first;
}
}
/*
const int era=2000000;
long long sieve[era];
void Sieveuse(){
for(ll i=1;i<era;i++){
sieve[i]=i;
}
for(ll i=2;i<era;i++){
if(sieve[i]!=i){
continue;
}
for(ll j=i*i;j<era;j+=i){
chmin(sieve[j],i);
}
}
}
bool isprime(int p){
if(sieve[p]==p){
return true;
}
else{
return false;
}
}
*/
ll lcm(ll a,ll b){
return a/gcd(a,b)*b;
}
void bf(ll n,string s){
for(ll i=0;i<n;i++){
cout<<s;
}
cout<<"\n";
return;
}
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
explicit mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
struct dsu {
public:
dsu() : _n(0) {}
explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
template <class T> struct fenwick_tree {
using U = T;
public:
fenwick_tree() : _n(0) {}
explicit fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
//for segment tree
ll op(ll a,ll b){
return (a+b)%MOD;
}
ll e(){
return 0LL;
}
void Solve();
signed main(){
cin.tie(0);
ios::sync_with_stdio(false);
cout<<setprecision(20)<<fixed;
Solve();
}
/****************************************\
| Thank you for viewing my code:) |
| Written by RedSpica a.k.a. RanseMirage |
| Twitter:@asakaakasaka |
\****************************************/
//segtreeの葉の先頭の添え字はN-1
void Solve(){
ll a,b,s;
cin>>a>>b>>s;
ll ans=0;
FOR(x,1,s+1){
if(a*b<x){
break;
}
auto A=div(x);
ll m=A.size();
FOR(i,0,m){
ll h=A[i],w=x/A[i];
if(h<=a and w<=b){
ans+=(a-h+1)*(b-w+1);
}
}
}
cout<<ans<<"\n";
return;
}
RedSpica