結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2022-08-22 20:42:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,018 bytes |
| コンパイル時間 | 4,351 ms |
| コンパイル使用メモリ | 378,008 KB |
| 最終ジャッジ日時 | 2025-01-31 02:57:03 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
// clang-format off
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
// #pragma GCC optimize("omit-frame-pointer")
// #pragma GCC optimize("inline")
// #pragma GCC option("arch=native")
// #pragma GCC option("no-zero-upper")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
#include <immintrin.h>
using i8 = std::int8_t;
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using u128 = __uint128_t;
template<typename T>
using vec = std::vector<T>;
template<typename T>
using vvec = std::vector<std::vector<T>>;
template<typename T>
using vvvec = std::vector<std::vector<std::vector<T>>>;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//clang-format on
template<typename T, typename U>
struct BarrettReduction {
T m;
T im;
BarrettReduction() = default;
explicit BarrettReduction(T m_) : m(m_), im((~T(0)) / m_) {}
T get_mod() { return m; }
std::pair<T, T> div_rem(T a) {
if (m == 1) return { a, 0 };
const T inv = im;
T q = T((U(a) * U(inv)) >> __builtin_popcountll(T(~0)));
T r = a - q * m;
if (m <= r) {
r -= m;
q++;
}
return { q, r };
}
T div(T a) {
return div_rem(a).first;
}
T rem(T a) {
return div_rem(a).second;
}
T pow(T a, T k) {
T ret = T(1);
T mul = a;
while (k > 0) {
if (k & 1) ret = rem(ret * mul);
mul = rem(mul * mul);
k >>= 1;
}
return ret;
}
};
struct BarrettReduction128 {
u128 m;
u128 im;
BarrettReduction128() = default;
explicit BarrettReduction128(u128 m_) : m(m_), im((~u128(0)) / m_) {}
u128 get_mod() { return m; }
std::pair<u128, u128> div_rem(u128 a) {
if (m == 1) return { a, 0 };
const u128 inv = im;
const u128 mask = 0xffffffffffffffffull;
u128 au = a >> 64;
u128 ad = a & mask;
u128 imu = inv >> 64;
u128 imd = inv & mask;
u128 q = au * imu;
u128 x = (ad * imd) >> 64;
u128 auximd = au * imd;
u128 adximu = ad * imu;
if (std::numeric_limits<u128>::max() - x >= auximd)
q++;
x += auximd;
if (std::numeric_limits<u128>::max() - x >= adximu)
q++;
x += adximu;
q += x >> 64;
u128 r = a - q * m;
if (m <= r) {
r -= m;
q++;
}
return { q, r };
}
u128 div(u128 a) {
return div_rem(a).first;
}
u128 rem(u128 a) {
return div_rem(a).second;
}
u128 pow(u128 a, u128 k) {
u128 ret = 1;
u128 mul = a;
while (k > 0) {
if (k & 1) ret = rem(ret * mul);
mul = rem(mul * mul);
k >>= 1;
}
return ret;
}
};
bool miller_rabin(u64 n) {
{
if (n <= 1) return false;
if (n <= 3) return true;
if (!(n & 1)) return false;
}
BarrettReduction128 br(n);
u64 m = n - 1;
u64 d = m >> __builtin_ctzll(m);
u64 base[] = { 2ul, 325ul, 9375ul, 28178ul, 450775ul, 9780504ul, 1795265022ul };
for (int i = 0; i < 7; ++i) {
if (n <= base[i]) break;
u64 t = d;
u64 y = u64(br.pow(base[i], t));
while (t != m && y != 1 && y != m) {
y = u64(br.rem(u128(y) * y));
t <<= 1;
}
if (y != m && (!(t & 1))) return false;
}
return true;
}
int main() {
u64 Q; std::cin >> Q;
while (Q--) {
u64 x; std::cin >> x;
std::cout << x << " ";
std::cout << (miller_rabin(x) ? "1" : "0") << "\n";
}
}
nonamae