結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | 👑 Mizar |
提出日時 | 2022-08-23 12:11:28 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 13 ms / 9,973 ms |
コード長 | 32,583 bytes |
コンパイル時間 | 11,895 ms |
コンパイル使用メモリ | 377,704 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:55:16 |
合計ジャッジ時間 | 12,956 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 0 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 10 ms
5,248 KB |
testcase_05 | AC | 10 ms
5,248 KB |
testcase_06 | AC | 8 ms
5,248 KB |
testcase_07 | AC | 8 ms
5,248 KB |
testcase_08 | AC | 8 ms
5,248 KB |
testcase_09 | AC | 13 ms
5,248 KB |
ソースコード
// -*- coding:utf-8-unix -*- use std::io::{BufRead,Write}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[allow(unused)] macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } #[allow(unused)] macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } #[allow(unused)] macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl<T: std::cmp::PartialOrd> Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } // Integer Wrapper Traits pub trait Zero { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One { fn one() -> Self; } pub trait TrailingZeros { fn trailing_zeros(&self) -> u32; } pub trait WrappingAdd { fn wrapping_add(&self, v: &Self) -> Self; } pub trait WrappingSub { fn wrapping_sub(&self, v: &Self) -> Self; } pub trait WrappingMul { fn wrapping_mul(&self, v: &Self) -> Self; } pub trait WrappingNeg { fn wrapping_neg(&self) -> Self; } pub trait IntNum: Copy + Eq + Ord + Zero + One + TrailingZeros + WrappingAdd + WrappingSub + WrappingMul + WrappingNeg + std::marker::Sized + std::ops::Add<Output = Self> + std::ops::AddAssign + std::ops::Sub<Output = Self> + std::ops::SubAssign + std::ops::Mul<Output = Self> + std::ops::Div<Output = Self> + std::ops::Rem<Output = Self> + std::ops::BitAnd<Output = Self> + std::ops::Shl<Output = Self> + std::ops::ShlAssign + std::ops::Shr<Output = Self> + std::ops::ShrAssign + std::fmt::Debug { } pub trait UIntNum: IntNum {} pub trait IIntNum: IntNum {} macro_rules! define_zero_one { ($ty:ty, $zero:expr, $one:expr) => { impl Zero for $ty { #[inline] fn zero() -> Self { $zero } #[inline] fn is_zero(&self) -> bool { *self == $zero } } impl One for $ty { #[inline] fn one() -> Self { $one } } }; } define_zero_one!(usize, 0, 1); define_zero_one!(u8, 0, 1); define_zero_one!(u16, 0, 1); define_zero_one!(u32, 0, 1); define_zero_one!(u64, 0, 1); define_zero_one!(u128, 0, 1); define_zero_one!(isize, 0, 1); define_zero_one!(i8, 0, 1); define_zero_one!(i16, 0, 1); define_zero_one!(i32, 0, 1); define_zero_one!(i64, 0, 1); define_zero_one!(i128, 0, 1); define_zero_one!(f32, 0.0, 1.0); define_zero_one!(f64, 0.0, 1.0); macro_rules! integer_bitcount_impl { ($trait_name:ident, $method:ident, $t:ty) => { impl $trait_name for $t { #[inline] fn $method(&self) -> u32 { <$t>::$method(*self) } } }; } macro_rules! integer_wrapping_impl { ($trait_name:ident, $method:ident, $t:ty) => { impl $trait_name for $t { #[inline] fn $method(&self, v: &Self) -> Self { <$t>::$method(*self, *v) } } }; ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => { impl $trait_name<$rhs> for $t { #[inline] fn $method(&self, v: &$rhs) -> Self { <$t>::$method(*self, *v) } } }; } macro_rules! integer_wrapping_impl1 { ($trait_name:ident, $method:ident, $t:ty) => { impl $trait_name for $t { #[inline] fn $method(&self) -> Self { <$t>::$method(*self) } } }; } integer_bitcount_impl!(TrailingZeros, trailing_zeros, u8); integer_bitcount_impl!(TrailingZeros, trailing_zeros, u16); integer_bitcount_impl!(TrailingZeros, trailing_zeros, u32); integer_bitcount_impl!(TrailingZeros, trailing_zeros, u64); integer_bitcount_impl!(TrailingZeros, trailing_zeros, u128); integer_bitcount_impl!(TrailingZeros, trailing_zeros, usize); integer_bitcount_impl!(TrailingZeros, trailing_zeros, i8); integer_bitcount_impl!(TrailingZeros, trailing_zeros, i16); integer_bitcount_impl!(TrailingZeros, trailing_zeros, i32); integer_bitcount_impl!(TrailingZeros, trailing_zeros, i64); integer_bitcount_impl!(TrailingZeros, trailing_zeros, i128); integer_bitcount_impl!(TrailingZeros, trailing_zeros, isize); integer_wrapping_impl!(WrappingAdd, wrapping_add, u8); integer_wrapping_impl!(WrappingAdd, wrapping_add, u16); integer_wrapping_impl!(WrappingAdd, wrapping_add, u32); integer_wrapping_impl!(WrappingAdd, wrapping_add, u64); integer_wrapping_impl!(WrappingAdd, wrapping_add, u128); integer_wrapping_impl!(WrappingAdd, wrapping_add, usize); integer_wrapping_impl!(WrappingAdd, wrapping_add, i8); integer_wrapping_impl!(WrappingAdd, wrapping_add, i16); integer_wrapping_impl!(WrappingAdd, wrapping_add, i32); integer_wrapping_impl!(WrappingAdd, wrapping_add, i64); integer_wrapping_impl!(WrappingAdd, wrapping_add, i128); integer_wrapping_impl!(WrappingAdd, wrapping_add, isize); integer_wrapping_impl!(WrappingSub, wrapping_sub, u8); integer_wrapping_impl!(WrappingSub, wrapping_sub, u16); integer_wrapping_impl!(WrappingSub, wrapping_sub, u32); integer_wrapping_impl!(WrappingSub, wrapping_sub, u64); integer_wrapping_impl!(WrappingSub, wrapping_sub, u128); integer_wrapping_impl!(WrappingSub, wrapping_sub, usize); integer_wrapping_impl!(WrappingSub, wrapping_sub, i8); integer_wrapping_impl!(WrappingSub, wrapping_sub, i16); integer_wrapping_impl!(WrappingSub, wrapping_sub, i32); integer_wrapping_impl!(WrappingSub, wrapping_sub, i64); integer_wrapping_impl!(WrappingSub, wrapping_sub, i128); integer_wrapping_impl!(WrappingSub, wrapping_sub, isize); integer_wrapping_impl!(WrappingMul, wrapping_mul, u8); integer_wrapping_impl!(WrappingMul, wrapping_mul, u16); integer_wrapping_impl!(WrappingMul, wrapping_mul, u32); integer_wrapping_impl!(WrappingMul, wrapping_mul, u64); integer_wrapping_impl!(WrappingMul, wrapping_mul, u128); integer_wrapping_impl!(WrappingMul, wrapping_mul, usize); integer_wrapping_impl!(WrappingMul, wrapping_mul, i8); integer_wrapping_impl!(WrappingMul, wrapping_mul, i16); integer_wrapping_impl!(WrappingMul, wrapping_mul, i32); integer_wrapping_impl!(WrappingMul, wrapping_mul, i64); integer_wrapping_impl!(WrappingMul, wrapping_mul, i128); integer_wrapping_impl!(WrappingMul, wrapping_mul, isize); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, u8); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, u16); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, u32); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, u64); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, u128); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, usize); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, i8); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, i16); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, i32); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, i64); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, i128); integer_wrapping_impl1!(WrappingNeg, wrapping_neg, isize); impl IntNum for usize {} impl IntNum for u8 {} impl IntNum for u16 {} impl IntNum for u32 {} impl IntNum for u64 {} impl IntNum for u128 {} impl IntNum for isize {} impl IntNum for i8 {} impl IntNum for i16 {} impl IntNum for i32 {} impl IntNum for i64 {} impl IntNum for i128 {} impl UIntNum for usize {} impl UIntNum for u8 {} impl UIntNum for u16 {} impl UIntNum for u32 {} impl UIntNum for u64 {} impl UIntNum for u128 {} impl IIntNum for isize {} impl IIntNum for i8 {} impl IIntNum for i16 {} impl IIntNum for i32 {} impl IIntNum for i64 {} impl IIntNum for i128 {} // モンゴメリ剰余乗算 (Montgomery modular multiplication) pub trait UMontTrait<T: UIntNum> { fn n(&self) -> T; fn ni(&self) -> T; fn r(&self) -> T; fn r2(&self) -> T; fn d(&self) -> T; fn k(&self) -> u32; fn new(n: T) -> Self; fn addmod(&self, a: T, b: T) -> T; fn submod(&self, a: T, b: T) -> T; #[inline] fn div2(&self, ar: T) -> T { // == ar / 2 (mod n) if (ar & T::one()).is_zero() { ar >> T::one() } else { (ar >> T::one()) + (((self.n()) >> T::one()) + T::one()) } } fn mrmul(&self, ar: T, br: T) -> T; fn mr(&self, ar: T) -> T; #[inline] fn ar(&self, a: T) -> T { // == a * r (mod n) debug_assert!(a < self.n()); self.mrmul(a, self.r2()) } #[inline] fn powir(&self, mut ar: T, mut b: T) -> T { // == ((ar / r) ** b) * r (mod n) debug_assert!(ar < self.n()); let mut t = if (b & T::one()).is_zero() { self.r() } else { ar }; b >>= T::one(); while !b.is_zero() { ar = self.mrmul(ar, ar); t = self.mrmul(t, if (b & T::one()).is_zero() { self.r() } else { ar }); b >>= T::one(); } t } fn prime_test_once(&self, base: T) -> bool { // Miller-Rabin primality test debug_assert!(base > T::one()); let (n, r, d, k) = (self.n(), self.r(), self.d(), self.k()); let b = base % n; if b.is_zero() { return true; } let mut br = self.powir(self.ar(b), d); if br == r { return true; } let negr = n - r; for _ in 0..k { if br == negr { return true; } br = self.mrmul(br, br); } false } } pub struct U64Mont { n: u64, // n is odd, and n > 2 ni: u64, // n * ni == 1 (mod 2**64) r: u64, // == 2**64 (mod n) r2: u64, // == 2**128 (mod n) d: u64, // == (n - 1) >> (n - 1).trailing_zeros() k: u32, // == (n - 1).trailing_zeros() } impl UMontTrait<u64> for U64Mont { #[inline] fn n(&self) -> u64 { self.n } #[inline] fn ni(&self) -> u64 { self.ni } #[inline] fn r(&self) -> u64 { self.r } #[inline] fn r2(&self) -> u64 { self.r2 } #[inline] fn d(&self) -> u64 { self.d } #[inline] fn k(&self) -> u32 { self.k } #[inline] fn new(n: u64) -> Self { debug_assert_eq!(n & 1, 1); // // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63 // ni0 := n; // = 2*k+1 = (1+(2**2)*((k*(k+1))**1))/(2*k+1) let mut ni = n; // ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**4)*((k*(k+1))**2))/(2*k+1) // ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**8)*((k*(k+1))**4))/(2*k+1) // ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**16)*((k*(k+1))**8))/(2*k+1) // ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**32)*((k*(k+1))**16))/(2*k+1) // ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**64)*((k*(k+1))**32))/(2*k+1) // // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64 for _ in 0..5 { ni = ni.wrapping_mul(2u64.wrapping_sub(n.wrapping_mul(ni))); } debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64) let r: u64 = n.wrapping_neg() % n; // == 2**64 (mod n) let r2: u64 = ((n as u128).wrapping_neg() % (n as u128)) as u64; // == 2**128 (mod n) let mut d = n - 1; let k = d.trailing_zeros(); d >>= k; debug_assert_eq!(Self { n, ni, r, r2, d, k }.mr(r), 1); // r / r == 1 (mod n) debug_assert_eq!(Self { n, ni, r, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n) Self { n, ni, r, r2, d, k } } #[inline] fn addmod(&self, a: u64, b: u64) -> u64 { // == a + b (mod n) debug_assert!(a < self.n); debug_assert!(b < self.n); let t: (u64, bool) = a.overflowing_add(b); let u: (u64, bool) = t.0.overflowing_sub(self.n); if t.1 || !(u.1) { u.0 } else { t.0 } } #[inline] fn submod(&self, a: u64, b: u64) -> u64 { // == a - b (mod n) debug_assert!(a < self.n); debug_assert!(b < self.n); let t: (u64, bool) = a.overflowing_sub(b); if t.1 { t.0.wrapping_add(self.n) } else { t.0 } } #[inline] fn mrmul(&self, ar: u64, br: u64) -> u64 { // == (ar * br) / r (mod n) debug_assert!(ar < self.n); debug_assert!(br < self.n); let (n, ni) = (self.n, self.ni); let t: u128 = (ar as u128) * (br as u128); let t: (u64, bool) = ((t >> 64) as u64).overflowing_sub((((((t as u64).wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64); if t.1 { t.0.wrapping_add(n) } else { t.0 } } #[inline] fn mr(&self, ar: u64) -> u64 { // == ar / r (mod n) debug_assert!(ar < self.n); let (n, ni) = (self.n, self.ni); let t: (u64, bool) = (((((ar.wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64).overflowing_neg(); if t.1 { t.0.wrapping_add(n) } else { t.0 } } } pub struct U32Mont { n: u32, // n is odd, and n > 2 ni: u32, // n * mi == 1 (mod 2**32) r: u32, // == 2**32 (mod n) r2: u32, // == 2**64 (mod n) d: u32, // == (n - 1) >> (n - 1).trailing_zeros() k: u32, // == (n - 1).trailing_zeros() } impl UMontTrait<u32> for U32Mont { #[inline] fn n(&self) -> u32 { self.n } #[inline] fn ni(&self) -> u32 { self.ni } #[inline] fn r(&self) -> u32 { self.r } #[inline] fn r2(&self) -> u32 { self.r2 } #[inline] fn d(&self) -> u32 { self.d } #[inline] fn k(&self) -> u32 { self.k } #[inline] fn new(n: u32) -> Self { debug_assert_eq!(n & 1, 1); // // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63 // ni0 := n; // = 2*k+1 = (1+(2**2)*((k*(k+1))**1))/(2*k+1) let mut ni = n; // ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**4)*((k*(k+1))**2))/(2*k+1) // ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**8)*((k*(k+1))**4))/(2*k+1) // ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**16)*((k*(k+1))**8))/(2*k+1) // ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**32)*((k*(k+1))**16))/(2*k+1) // // (n * ni4) mod 2**32 = ((2*k+1) * ni4) mod 2**32 = 1 mod 2**32 for _ in 0..4 { ni = ni.wrapping_mul(2u32.wrapping_sub(n.wrapping_mul(ni))); } debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**32) let r: u32 = n.wrapping_neg() % n; // == 2**64 (mod n) let r2: u32 = ((n as u64).wrapping_neg() % (n as u64)) as u32; // == 2**64 (mod n) let mut d = n - 1; let k = d.trailing_zeros(); d >>= k; debug_assert_eq!(Self { n, ni, r, r2, d, k }.mr(r), 1); // r / r == 1 (mod n) debug_assert_eq!(Self { n, ni, r, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n) Self { n, ni, r, r2, d, k } } #[inline] fn addmod(&self, a: u32, b: u32) -> u32 { // == a + b (mod n) debug_assert!(a < self.n); debug_assert!(b < self.n); let t: (u32, bool) = a.overflowing_add(b); let u: (u32, bool) = t.0.overflowing_sub(self.n); if t.1 || !(u.1) { u.0 } else { t.0 } } #[inline] fn submod(&self, a: u32, b: u32) -> u32 { // == a - b (mod n) debug_assert!(a < self.n); debug_assert!(b < self.n); let t: (u32, bool) = a.overflowing_sub(b); if t.1 { t.0.wrapping_add(self.n) } else { t.0 } } #[inline] fn mrmul(&self, ar: u32, br: u32) -> u32 { // == (ar * br) / r (mod n) debug_assert!(ar < self.n); debug_assert!(br < self.n); let (n, ni) = (self.n, self.ni); let t: u64 = (ar as u64) * (br as u64); let t: (u32, bool) = ((t >> 32) as u32).overflowing_sub((((((t as u32).wrapping_mul(ni)) as u64) * (n as u64)) >> 32) as u32); if t.1 { t.0.wrapping_add(n) } else { t.0 } } #[inline] fn mr(&self, ar: u32) -> u32 { // == ar / r (mod n) debug_assert!(ar < self.n); let (n, ni) = (self.n, self.ni); let t: (u32, bool) = (((((ar.wrapping_mul(ni)) as u64) * (n as u64)) >> 32) as u32).overflowing_neg(); if t.1 { t.0.wrapping_add(n) } else { t.0 } } } // 64bit整数平方根(固定ループ回数) -> (floor(sqrt(iv)), remain) #[allow(unused)] #[inline] fn isqrt64f(iv: u64) -> (u64, u64) { isqrt64i(iv, 0) } // 64bit整数平方根(可変ループ回数) -> (floor(sqrt(iv)), remain) #[allow(unused)] #[inline] fn isqrt64d(iv: u64) -> (u64, u64) { isqrt64i(iv, iv.leading_zeros()) } // 64bit整数平方根(lz:ケチるループ回数*2+(0~1)、内部実装) -> (floor(sqrt(iv)), remain) #[inline] fn isqrt64i(iv: u64, lz: u32) -> (u64, u64) { let n = (64 >> 1) - (lz >> 1); let s = (lz >> 1) << 1; let t = n << 1; let (mut a, mut b, c, d, e) = ( iv as u128, 0x0000_0000_0000_0000_4000_0000_0000_0000 >> s, 0xffff_ffff_ffff_fffe_0000_0000_0000_0000 >> s, 0x0000_0000_0000_0001_0000_0000_0000_0000 >> s, 0x0000_0000_0000_0000_ffff_ffff_ffff_ffff >> s, ); for _ in 0..n { if a >= b { a -= b; b = ((b + b) & c) + d + (b & e); } else { b = ((b + b) & c) + (b & e); } a <<= 2; } ((b >> t) as u64, (a >> t) as u64) } // Jacobi symbol: ヤコビ記号 #[inline] fn jacobi(a: i64, mut n: u64) -> i32 { let (mut a, mut j): (u64, i32) = if a >= 0 { (a as u64, 1) } else if (n & 3) == 3 { ((-a) as u64, -1) } else { ((-a) as u64, 1) }; while a > 0 { let ba = a.trailing_zeros(); a >>= ba; if ((n & 7) == 3 || (n & 7) == 5) && (ba & 1) == 1 { j = -j; } if (a & n & 3) == 3 { j = -j; } let t = a; a = n; n = t; a %= n; if a > (n >> 1) { a = n - a; if (n & 3) == 3 { j = -j; } } } if n == 1 { j } else { 0 } } #[inline] fn prime_test_base2(u64mont: &U64Mont) -> bool { // Mirrer-Rabin primality test (base 2) // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, ... u64mont.prime_test_once(2) } #[allow(unused)] #[inline] fn prime_test_3bases(u64mont: &U64Mont) -> bool { assert!(u64mont.n <= 350269456337); u64mont.prime_test_once(4230279247111683200) && u64mont.prime_test_once(14694767155120705706) && u64mont.prime_test_once(16641139526367750375) } #[allow(unused)] #[inline] fn prime_test_7bases(u64mont: &U64Mont) -> bool { u64mont.prime_test_once(2) && u64mont.prime_test_once(325) && u64mont.prime_test_once(9375) && u64mont.prime_test_once(28178) && u64mont.prime_test_once(450775) && u64mont.prime_test_once(9780504) && u64mont.prime_test_once(1795265022) } fn prime_test_lucas(u64mont: &U64Mont) -> bool { // Lucas primality test // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, ... let n = u64mont.n; let mut d: i64 = 5; for i in 0..64 { if jacobi(d, n) == -1 { break; } if i == 32 && isqrt64f(n).1 == 0 { return false; } if (i & 1) == 1 { d = 2 - d; } else { d = -(d + 2); } } let qm = u64mont.ar(if d < 0 {((1 - d) as u64) / 4 % n} else {n - ((d - 1) as u64) / 4 % n}); let mut k = (n + 1) << (n + 1).leading_zeros(); let mut um = u64mont.r; let mut vm = u64mont.r; let mut qn = qm; let dm: u64 = u64mont.ar(if d < 0 { let nd = ((-d) as u64) % n; if nd == 0 { 0 } else { n - nd } } else { (d as u64) % n }); k <<= 1; while k > 0 { um = u64mont.mrmul(um, vm); vm = u64mont.submod(u64mont.mrmul(vm, vm), u64mont.addmod(qn, qn)); qn = u64mont.mrmul(qn, qn); if (k >> 63) != 0 { let mut uu = u64mont.addmod(um, vm); uu = u64mont.div2(uu); vm = u64mont.addmod(u64mont.mrmul(dm, um), vm); vm = u64mont.div2(vm); um = uu; qn = u64mont.mrmul(qn, qm); } k <<= 1; } if um == 0 || vm == 0 { return true; } let mut x = (n + 1) & (!n); x >>= 1; while x > 0 { um = u64mont.mrmul(um, vm); vm = u64mont.submod(u64mont.mrmul(vm, vm), u64mont.addmod(qn, qn)); if vm == 0 { return true; } qn = u64mont.mrmul(qn, qn); x >>= 1; } false } // Baillie–PSW primarity test pub fn prime_test_bpsw(n: u64) -> bool { if n == 2 { return true; } if n == 1 || (n & 1) == 0 { return false; } let u64mont = U64Mont::new(n); // Mirrer-Rabin primality test (base 2) // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, ... prime_test_base2(&u64mont) && // Lucas primality test // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, ... prime_test_lucas(&u64mont) } pub fn prime_test_32(n: u32) -> bool { if n == 2 { return true; } if n == 1 || (n & 1) == 0 { return false; } let u32mont = U32Mont::new(n); match n { // Deterministic variants of the Miller-Rabin primality test // http://miller-rabin.appspot.com/ 0..=49141 => { u32mont.prime_test_once(921211727) }, 0..=360018361 => { u32mont.prime_test_once(1143370) && u32mont.prime_test_once(2350307676) }, _ => { u32mont.prime_test_once(2) && u32mont.prime_test_once(7) && u32mont.prime_test_once(61) } } } pub fn prime_test_64(n: u64) -> bool { if n == 2 { return true; } if n == 1 || (n & 1) == 0 { return false; } let u64mont = U64Mont::new(n); match n { // Deterministic variants of the Miller-Rabin primality test // http://miller-rabin.appspot.com/ 0..=341531 => { u64mont.prime_test_once(9345883071009581737) }, 0..=1050535501 => { u64mont.prime_test_once(336781006125) && u64mont.prime_test_once(9639812373923155) }, 0..=350269456337 => { u64mont.prime_test_once(4230279247111683200) && u64mont.prime_test_once(14694767155120705706) && u64mont.prime_test_once(16641139526367750375) }, 0..=55245642489451 => { u64mont.prime_test_once(2) && u64mont.prime_test_once(141889084524735) && u64mont.prime_test_once(1199124725622454117) && u64mont.prime_test_once(11096072698276303650) }, 0..=7999252175582851 => { u64mont.prime_test_once(2) && u64mont.prime_test_once(4130806001517) && u64mont.prime_test_once(149795463772692060) && u64mont.prime_test_once(186635894390467037) && u64mont.prime_test_once(3967304179347715805) }, 0..=585226005592931977 => { u64mont.prime_test_once(2) && u64mont.prime_test_once(123635709730000) && u64mont.prime_test_once(9233062284813009) && u64mont.prime_test_once(43835965440333360) && u64mont.prime_test_once(761179012939631437) && u64mont.prime_test_once(1263739024124850375) }, _ => { u64mont.prime_test_once(2) && u64mont.prime_test_once(325) && u64mont.prime_test_once(9375) && u64mont.prime_test_once(28178) && u64mont.prime_test_once(450775) && u64mont.prime_test_once(9780504) && u64mont.prime_test_once(1795265022) }, } } fn main() { let start_time = std::time::Instant::now(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} /* input! { n: usize, x: [u64; n], } */ let input = std::io::stdin(); let mut lines = std::io::BufReader::new(input.lock()).lines(); let n: usize = lines.next().unwrap().unwrap().parse().unwrap(); /* let x: Vec<u64> = lines.take(n).map(|l| l.unwrap().parse().unwrap()).collect(); let elapsed1 = start_time.elapsed(); let res: Vec<bool> = x.iter().map(|&v| prime_test_bpsw(v)).collect(); let elapsed2 = start_time.elapsed(); for i in 0..n { puts!("{} {}\n", x[i], if res[i] { "1" } else { "0" }); } let elapsed3 = start_time.elapsed(); out.flush().unwrap(); let elapsed4 = start_time.elapsed(); eprint!( " input: {}us\ncompute: {}us\n output: {}us\n wflush: {}us\n", elapsed1.as_micros(), elapsed2.as_micros(), elapsed3.as_micros(), elapsed4.as_micros(), ); */ for _ in 0..n { let x: u64 = lines.next().unwrap().unwrap().parse().unwrap(); puts!("{} {}\n", x, if prime_test_bpsw(x) { "1" } else { "0" }); } eprint!("{}us\n", start_time.elapsed().as_micros()); } #[cfg(test)] mod tests { use crate::*; #[test] fn test_base2() { // Mirrer-Rabin primality test (base 2) // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, ... // composite 2-SPRP list up to 2**64 ( http://miller-rabin.appspot.com/#links ) // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html ) // Miller-Rabin base 2 data (up to 1e15) ( http://ntheory.org/data/spsps.txt ) let assumed: Vec<u64> = vec![ 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,65281,74665,80581,85489,88357,90751,104653,130561, 196093,220729,233017,252601,253241,256999,271951,280601,314821,357761,390937,458989,476971,486737,489997, 514447,580337,635401,647089,741751,800605,818201,838861,873181,877099,916327,976873,983401,1004653,1016801, 1023121,1082401,1145257,1194649,1207361,1251949,1252697,1302451,1325843,1357441,1373653,1397419,1441091, 1493857,1507963,1509709,1530787,1678541,1730977,1811573,1876393,1907851,1909001,1969417,1987021,2004403, 2081713,2181961,2205967,2264369,2269093,2284453,2304167,2387797,2419385,2510569,2746477,2748023,2757241, 2811271,2909197,2953711,2976487,3090091,3116107,3125281,3375041,3400013,3429037,3539101,3567481,3581761, 3605429,3898129,4181921,4188889,4335241,4360621,4469471,4502485,4513841,4682833,4835209,4863127,5016191, 5044033,5049001,5173169,5173601,5256091,5310721,5444489,5489641,5590621,5599765,5672041,5681809,5919187, 6140161,6226193,6233977,6334351,6368689,6386993,6787327,6836233,6952037,7177105,7306261,7306561,7462001, 7674967,7759937,7820201,7883731,8036033,8095447,8384513,8388607,8534233,8725753,8727391,9006401,9056501, 9069229,9073513,9371251,9564169,9567673,9588151,9729301,9774181,9863461,9995671 ]; let result: Vec<u64> = (3..10_000_000).filter(|&n| n & 1 == 1).filter(|&n| { let u64mont = U64Mont::new(n); let res_3bases = prime_test_3bases(&u64mont); let res_base2 = prime_test_base2(&u64mont); assert!(!res_3bases || res_base2); res_3bases != res_base2 }).collect(); assert_eq!(assumed, result); } #[test] fn test_lucas() { // Lucas primality test // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519, ... // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html ) // Strong Lucas-Selfridge data (up to 1e15) ( http://ntheory.org/data/slpsps-baillie.txt ) let assumed: Vec<u64> = vec![ 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,75077,97439,100127,113573,115639,130139,155819, 158399,161027,162133,176399,176471,189419,192509,197801,224369,230691,231703,243629,253259,268349,288919, 313499,324899,353219,366799,391169,430127,436409,455519,487199,510479,572669,611399,622169,635627,636199, 701999,794611,835999,839159,851927,871859,875879,887879,895439,950821,960859,1033997,1106327,1241099, 1256293,1308119,1311389,1388903,1422319,1501439,1697183,1711469,1777159,1981559,2003579,2263127,2435423, 2461211,2518889,2566409,2624399,2662277,2666711,2690759,2738969,2782079,2828699,2942081,2952071,3109049, 3165119,3175883,3179609,3204599,3373649,3399527,3410531,3441239,3452147,3479111,3498879,3579599,3684251, 3694079,3700559,3706169,3735521,3774377,3776219,3785699,3802499,3813011,3865319,3892529,3900797,3903791, 4067279,4109363,4226777,4309631,4322399,4368869,4403027,4563719,4828277,4870847,5133281,5208377,5299139, 5396999,5450201,5479109,5514479,5720219,5762629,5807759,5879411,5942627,6001379,6003923,6296291,6562891, 6641189,6668099,6784721,6784861,6863291,6893531,6965639,7017949,7163441,7199399,7241639,7353917,7453619, 7621499,8112899,8159759,8221121,8234159,8361989,8372849,8518127,8530559,8555009,8574551,8581219,8711699, 8817899,8990279,9049319,9335969,9401893,9485951,9587411,9713027,9793313,9800981,9827711,9922337,9965069 ]; let result: Vec<u64> = (3..10_000_000).filter(|&n| n & 1 == 1).filter(|&n| { let u64mont = U64Mont::new(n); let res_3bases = prime_test_3bases(&u64mont); let res_lucas = prime_test_lucas(&u64mont); assert!(!res_3bases || res_lucas); res_3bases != res_lucas }).collect(); assert_eq!(assumed, result); } #[test] fn test_bpsw_1e7() { for n in 3..10_000_000 { if (n & 1) == 0 { continue; } let u64mont = U64Mont::new(n); let res_3bases = prime_test_3bases(&u64mont); let res_bpsw = prime_test_base2(&u64mont) && prime_test_lucas(&u64mont); assert_eq!(res_3bases, res_bpsw); } } #[test] fn test_bpsw_1e15() { // 50bit for n in 1_000_000_000_000_000..1_000_000_010_000_000 { if (n & 1) == 0 { continue; } let u64mont = U64Mont::new(n); let res_7bases = prime_test_7bases(&u64mont); let res_bpsw = prime_test_base2(&u64mont) && prime_test_lucas(&u64mont); assert_eq!(res_7bases, res_bpsw); } } #[test] fn test_bpsw_9e18() { // 63bit for n in 9_000_000_000_000_000_000..9_000_000_000_010_000_000 { if (n & 1) == 0 { continue; } let u64mont = U64Mont::new(n); let res_7bases = prime_test_7bases(&u64mont); let res_bpsw = prime_test_base2(&u64mont) && prime_test_lucas(&u64mont); assert_eq!(res_7bases, res_bpsw); } } #[test] fn test_bpsw_10e18() { // 64bit for n in 10_000_000_000_000_000_000..10_000_000_000_010_000_000 { if (n & 1) == 0 { continue; } let u64mont = U64Mont::new(n); let res_7bases = prime_test_7bases(&u64mont); let res_bpsw = prime_test_base2(&u64mont) && prime_test_lucas(&u64mont); assert_eq!(res_7bases, res_bpsw); } } #[test] fn test_bpsw_18e18() { // 64bit for n in 18_000_000_000_000_000_000..18_000_000_000_010_000_000 { if (n & 1) == 0 { continue; } let u64mont = U64Mont::new(n); let res_7bases = prime_test_7bases(&u64mont); let res_bpsw = prime_test_base2(&u64mont) && prime_test_lucas(&u64mont); assert_eq!(res_7bases, res_bpsw); } } }