結果

問題 No.2034 Anti Lexicography
ユーザー hamrayhamray
提出日時 2022-08-24 02:10:01
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 12,610 bytes
コンパイル時間 3,040 ms
コンパイル使用メモリ 234,964 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-11 07:57:05
合計ジャッジ時間 4,600 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 3 ms
5,248 KB
testcase_08 AC 3 ms
5,248 KB
testcase_09 AC 3 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 3 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 1 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include <atcoder/all>
//using namespace atcoder;
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
using namespace std;
 
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<int, int> pii;
typedef pair<long long, long long> PLL;
typedef pair<int, PII> TIII;
 
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
 
 
#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define rep(i, a, b) for (int i = a; i < (b); ++i)
#define trav(a, x) for (auto &a : x)
#define all(x) x.begin(), x.end()
 
#define MOD 1000000007
 
template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}
template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}
const double EPS = 1e-10, PI = acos(-1);
const double pi = 3.141592653589793238462643383279;
//ここから編集    
typedef string::const_iterator State;
ll GCD(ll a, ll b){
  return (b==0)?a:GCD(b, a%b);
}
ll LCM(ll a, ll b){
  return a/GCD(a, b) * b;
}
template<typename T> string tobin(T n) {
  string res = "";
  while(n) {
    res += (char)('0' + n%2); n>>=2;
  }
  reverse(all(res));
  return res;
}
template<typename T> vector<vector<T>> rotateMatrixclockwise(vector<vector<T>> v) {
  int n = v.size(), m = v[0].size();
  vector<vector<T>> res(m, vector<T>(n));
  REP(i,n) REP(j,m) res[j][n-i-1] = v[i][j];
  return res;
}

template< int mod >
struct ModInt {
  int x;
 
  ModInt() : x(0) {}
 
  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
 
  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }
 
  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }
 
  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }
 
  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }
 
  ModInt operator-() const { return ModInt(-x); }
 
  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
 
  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
 
  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
 
  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
 
  bool operator==(const ModInt &p) const { return x == p.x; }
 
  bool operator!=(const ModInt &p) const { return x != p.x; }
 
  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }
 
  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
 
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }
 
  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }
 
  static int get_mod() { return mod; }
};
 
using modint = ModInt< 998244353 >;
template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;
 
  Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }
 
  inline T fact(int k) const { return _fact[k]; }
 
  inline T rfact(int k) const { return _rfact[k]; }
 
  inline T inv(int k) const { return _inv[k]; }
 
  T P(int n, int r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }
 
  T C(int p, int q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }
 
  T H(int n, int r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};
 
ll modpow(ll x, ll n, ll mod) {
  ll res = 1;
  x %= mod;
  if(x == 0) return 0;
  while(n) {
    if(n&1) res = (res * x) % mod;
    x = (x * x) % mod;
    n >>= 1;
  }
  return res;
} 
inline long long mod(long long a, long long m) {
    return (a % m + m) % m;
}
template<typename T> 
struct BIT{
  int N;
  std::vector<T> node;
  BIT(){}
  BIT(int n){
    N = n;
    node.resize(N+10);
  }
  void build(int n) {
    N = n;
    node.resize(N+10);
  }
  /* a: 1-idxed */
  void add(int a, T x){
    for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;
  }

  /* [1, a] */
  T sum(int a){
    T res = 0;
    for(int x=a; x>0; x -= x & -x) res += node[x];
    return res;
  }

  /* [l, r] */
  T rangesum(int l, int r){
    if(l > r) return 0;
    return sum(r) - sum(l-1);
  }

  /* 
    a1+a2+...+aw >= valとなるような最小のwを返す
    @verify https://codeforces.com/contest/992/problem/E
  */
  int lower_bound(T val) {
    if(val < 0) return 0;

    int res = 0;
    int n = 1; 
    while (n < N) n *= 2;

    T tv=0;
    for (int k = n; k > 0; k /= 2) {
      if(res + k < N && node[res + k] < val){
        val -= node[res+k];
        res += k;
      }
    }
    return res+1; 
  }
};

struct UnionFind{
  std::vector<int> par;
  std::vector<int> siz;

  UnionFind(int sz_): par(sz_), siz(sz_) {
    for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;
  }

  void init(int sz_){
    par.resize(sz_);
    siz.resize(sz_);
    for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;
  }

  int root(int x){
    if(x == par[x]) return x;
    return par[x] = root(par[x]);
  }

  bool merge(int x, int y){
    x = root(x), y = root(y);
    if(x == y) return false;
    if(siz[x] < siz[y]) std::swap(x, y);
    siz[x] += siz[y];
    par[y] = x;
    return true;
  }

  bool issame(int x, int y){
    return root(x) == root(y);
  }

  int size(int x){
    return siz[root(x)];
  }
};
struct RollingHash{

    using ull = unsigned long long;
    const ull mod = (1ULL << 61) - 1;
    const ull MASK30 = (1ULL << 30) - 1;
    const ull MASK31 = (1ULL << 31) - 1;

    const ull MASK61 = mod;

    ull base;
    int n;
    vector<ull> hash, pow;

    RollingHash(const string &s)
    {
        random_device rnd;
        mt19937_64 mt(rnd());
        base = 1001;
        
        n = (int)s.size();
        hash.assign(n+1, 0);
        pow.assign(n+1, 1);
        
        for(int i=0; i<n; i++){
            hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);
            pow[i+1] = calc_mod(mul(pow[i], base));
        }
    }

    ull calc_mod(ull x){
        ull xu = x >> 61;
        ull xd = x & MASK61;
        ull res = xu + xd;
        if(res >= mod) res -= mod;
        return res;
    }

    ull mul(ull a, ull b){
        ull au = a >> 31;
        ull ad = a & MASK31;
        ull bu = b >> 31;
        ull bd = b & MASK31;
        ull mid = ad * bu + au * bd;
        ull midu = mid >> 30;
        ull midd = mid & MASK30;
        return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);
    }

    //[l,r)のハッシュ値
    inline ull get(int l, int r){
        ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));
        return res;
    }
    //string tのハッシュ値
    inline ull get(string t){
        ull res = 0;
        for(int i=0; i<t.size(); i++){
            res = calc_mod(mul(res, base)+t[i]);
        }
        return res;
    }
    //string s中のtの数をカウント
    inline int count(string t) {
        if(t.size() > n) return 0;
        auto hs = get(t);
        int res = 0;
        for(int i=0; i<n-t.size()+1; i++){
            if(get(i, i+t.size()) == hs) res++; 
        }
        return res;
    }

    /* 
        concat 
        @verify https://codeforces.com/problemset/problem/514/C
    */
    inline ull concat(ull h1, ull h2, int h2len){
      return calc_mod(h2 + mul(h1, pow[h2len]));
    }

    // LCPを求める S[a:] T[b:]
    inline int LCP(int a, int b){
        int len = min((int)hash.size()-a, (int)hash.size()-b);
        
        int lb = -1, ub = len;
        while(ub-lb>1){
            int mid = (lb+ub)/2;

            if(get(a, a+mid) == get(b, b+mid)) lb = mid;
            else ub = mid;
        }
        return lb;
    }
};
const int MAX_ROW = 110; // to be set appropriately
const int MAX_COL = 110; // to be set appropriately
struct BitMatrix {
    int H, W;
    bitset<MAX_COL> val[MAX_ROW];
    BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}
    inline bitset<MAX_COL>& operator [] (int i) {return val[i];}
};

int GaussJordan(BitMatrix &A, bool is_extended = false) {
    int rank = 0;
    for (int col = 0; col < A.W; ++col) {
        if (is_extended && col == A.W - 1) break;
        int pivot = -1;
        for (int row = rank; row < A.H; ++row) {
            if (A[row][col]) {
                pivot = row;
                break;
            }
        }
        if (pivot == -1) continue;
        swap(A[pivot], A[rank]);
        for (int row = 0; row < A.H; ++row) {
            if (row != rank && A[row][col]) A[row] ^= A[rank];
        }
        ++rank;
    }
    return rank;
}

int linear_equation(BitMatrix A, vector<int> b, vector<int> &res) {
    int m = A.H, n = A.W;
    BitMatrix M(m, n + 1);
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) M[i][j] = A[i][j];
        M[i][n] = b[i];
    }
    int rank = GaussJordan(M, true);

    // check if it has no solution
    for (int row = rank; row < m; ++row) if (M[row][n]) return -1;

    // answer
    res.assign(n, 0);
    for (int i = 0; i < rank; ++i) res[i] = M[i][n];
    return rank;
}

struct max_flow {
  struct edge { int to, cap, rev;};
  int V;
  vector<vector<edge>> G;
  vector<int> itr, level;

  max_flow(int V): V(V) {G.assign(V, vector<edge>());}

  void add_edge(int from, int to, int cap) {
    G[from].push_back((edge) {to, cap, (int)G[to].size()});
    G[to].push_back((edge){from, 0, (int)G[from].size()-1});
  }

  void bfs(int s){
    level.assign(V, -1);
    queue<int> q;
    level[s] = 0;
    q.push(s);
    while(q.size()){
      int v = q.front(); q.pop();
      for(auto &e: G[v]){
        if(e.cap>0 && level[e.to] < 0){
          level[e.to] = level[v] + 1;
          q.push(e.to);
        }
      }
    }
  }

  int dfs(int v, int t, int f){
    if(v == t) return f;
    for(int& i=itr[v]; i<(int)G[v].size(); i++){
      edge& e = G[v][i];
      if(e.cap > 0 && level[v] < level[e.to]) {
        int d = dfs(e.to, t, min(f, e.cap));
        if(d > 0){
          e.cap -= d;
          G[e.to][e.rev].cap += d;
          return d;
        }
      }
    }
    return 0;
  }

  int run(int s, int t){
    int ret = 0, f;
    while(bfs(s), level[t] >= 0){
      itr.assign(V, 0);
      while((f = dfs(s, t, INT_MAX)) > 0) ret += f;
    }
    return ret;
  }
};
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
template<typename T>
struct LazySegmentTree{
  const T INF = numeric_limits<T>::max();
  int n0;
  vector<T> node, lazy;

  LazySegmentTree(vector<T> &v){
    int n = v.size();
    n0 = 1;
    while(n0 < n) n0 <<= 1;
    node.resize(2*n0-1);
    lazy.assign(2*n0-1, 0);
    for(int i=0; i<n; i++) node[i+n0-1] = v[i];
    for(int i=n0-2; i>=0; i--) node[i] = min(node[i*2+1], node[i*2+2]);
  }

  void eval(int k){
    if(lazy[k] == 0) return;
    node[k] += lazy[k];
    if(k < n0-1){
      lazy[k*2+1] += lazy[k];
      lazy[k*2+2] += lazy[k];
    }
    lazy[k] = 0;
  }

  void update(int a, int b, T x, int k, ll l, ll r){
    eval(k);
    if(a <= l && r <= b){
      lazy[k] += x;
      eval(k);
    }else if(a < r && l < b) {
      update(a, b, x, k*2+1, l, (l+r)/2);
      update(a, b, x, k*2+2, (l+r)/2, r);
      node[k] = min(node[k*2+1], node[k*2+2]);
    }
  }

  void update(int l, int r, T x) { update(l, r, x, 0, 0, n0); }

  T query(int a, int b, int k, ll l, ll r){
    eval(k);
    if(r <= a || b <= l) return INF;
    else if(a <= l && r <= b){
      return node[k];
    }else{
      T vl = query(a, b, k*2+1, l, (l+r)/2);
      T vr = query(a, b, k*2+2, (l+r)/2, r);
      return min(vl, vr);
    }
  }
  T query(int l, int r) { return query(l, r, 0, 0, n0); }

  inline T operator[](int a) { return query(a, a + 1); }
};

int a[201010];
int main() {  
  cin.tie(0);
  ios::sync_with_stdio(false);
  cout << fixed << setprecision(20);
  
  int n; string s; cin >> n >> s;
  REP(i,n) {
    s[i] = (char)('a' + 25 - (s[i]-'a'));
  }
  cout << s << endl;
  return 0;

}
0