結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | Jashinchan |
提出日時 | 2022-08-24 18:36:46 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,668 bytes |
コンパイル時間 | 417 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 17,572 KB |
最終ジャッジ日時 | 2024-10-12 03:07:54 |
合計ジャッジ時間 | 11,754 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 29 ms
10,752 KB |
testcase_02 | AC | 30 ms
10,880 KB |
testcase_03 | AC | 30 ms
10,880 KB |
testcase_04 | TLE | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
ソースコード
def miller_rabin(n, check): d, s = n - 1, 0 while d % 2 == 0: d >>= 1 s += 1 for a in check: if n <= a: return True a = pow(a, d, n) if a == 1: continue r = 1 while a != n - 1: if r == s: return False a = a * a % n r += 1 return True def is_prime1(n): # < 5329 return miller_rabin(n, [377687]) def is_prime2(n): # < 19471033 return miller_rabin(n, [2, 299417]) def is_prime3(n): # < 4759123141 return miller_rabin(n, [2, 7, 61]) def is_prime4(n): # < 1122004669633 return miller_rabin(n, [2, 13, 23, 1662803]) def is_prime5(n): # < 3071837692357849 return miller_rabin(n, [2, 75088, 642735, 203659041, 3613982119]) def is_prime6(n): # < 585226005592931977 return miller_rabin(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375]) def is_prime7(n): # < 2 ** 64 return miller_rabin(n, [2, 3, 5, 7, 325, 9375, 28178, 450775, 9780504, 1795265022]) def is_prime(n): """ https://miller-rabin.appspot.com/ """ if n < 5329: return is_prime1(n) if n < 19471033: return is_prime2(n) if n < 4759123141: return is_prime3(n) if n < 1122004669633: return is_prime4(n) if n < 3071837692357849: return is_prime5(n) if n < 585226005592931977: return is_prime6(n) if n < 2 ** 64: return is_prime7(n) return miller_rabin(n, *range(2, n - 1)) for i in range(int(input())): x = int(input()) print(x, int(is_prime(x)))