結果

問題 No.8030 ミラー・ラビン素数判定法のテスト
ユーザー Jashinchan
提出日時 2022-08-24 18:40:54
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
TLE  
実行時間 -
コード長 821 bytes
コンパイル時間 145 ms
コンパイル使用メモリ 12,672 KB
実行使用メモリ 21,632 KB
最終ジャッジ日時 2024-10-12 03:11:36
合計ジャッジ時間 12,040 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 4 TLE * 1 -- * 5
権限があれば一括ダウンロードができます

ソースコード

diff #

def miller_rabin(n, bases):
    d, s = n - 1, 0
    while d % 2 == 0:
        d >>= 1
        s += 1
    for a in bases:
        if n <= a:
            return True
        a = pow(a, d, n)
        if a == 1:
            continue
        r = 1
        while a != n - 1:
            if r == s:
                return False
            a = a * a % n
            r += 1
    return True


def is_prime1(n):
    # < 4759123141
    return miller_rabin(n, [2, 7, 61])


def is_prime2(n):
    # < 2 ** 64
    return miller_rabin(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])


def is_prime(n):
    """
    https://miller-rabin.appspot.com/
    """
    if n < 4759123141:
        return is_prime1(n)
    else:
        return is_prime2(n)


for i in range(int(input())):
    x = int(input())
    print(x, int(is_prime(x)))
0