結果
問題 | No.2062 Sum of Subset mod 999630629 |
ユーザー | SSRS |
提出日時 | 2022-08-26 21:39:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 893 ms / 5,000 ms |
コード長 | 15,937 bytes |
コンパイル時間 | 2,779 ms |
コンパイル使用メモリ | 226,844 KB |
実行使用メモリ | 27,176 KB |
最終ジャッジ日時 | 2024-10-14 01:03:46 |
合計ジャッジ時間 | 11,196 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 27 ms
5,248 KB |
testcase_09 | AC | 22 ms
5,248 KB |
testcase_10 | AC | 20 ms
5,248 KB |
testcase_11 | AC | 242 ms
10,080 KB |
testcase_12 | AC | 267 ms
10,620 KB |
testcase_13 | AC | 146 ms
7,040 KB |
testcase_14 | AC | 268 ms
10,696 KB |
testcase_15 | AC | 47 ms
5,248 KB |
testcase_16 | AC | 211 ms
9,656 KB |
testcase_17 | AC | 232 ms
10,060 KB |
testcase_18 | AC | 142 ms
7,040 KB |
testcase_19 | AC | 49 ms
5,248 KB |
testcase_20 | AC | 79 ms
5,504 KB |
testcase_21 | AC | 112 ms
6,400 KB |
testcase_22 | AC | 77 ms
5,504 KB |
testcase_23 | AC | 17 ms
5,248 KB |
testcase_24 | AC | 17 ms
5,248 KB |
testcase_25 | AC | 860 ms
27,056 KB |
testcase_26 | AC | 857 ms
27,044 KB |
testcase_27 | AC | 858 ms
27,176 KB |
testcase_28 | AC | 889 ms
27,048 KB |
testcase_29 | AC | 893 ms
27,056 KB |
testcase_30 | AC | 536 ms
16,956 KB |
testcase_31 | AC | 537 ms
16,984 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; const long long MOD = 998244353; const long long MOD2 = 999630629; long long modpow(long long a, long long b){ long long ans = 1; while (b > 0){ if (b % 2 == 1){ ans *= a; ans %= MOD; } a *= a; a %= MOD; b /= 2; } return ans; } long long modinv(long long a){ return modpow(a, MOD - 2); } //https://judge.yosupo.jp/submission/101681 template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename T> struct Number_Theoretic_Transform { static int max_base; static T root; static vector<T> r, ir; Number_Theoretic_Transform() {} static void init() { if (!r.empty()) return; int mod = T::get_mod(); int tmp = mod - 1; root = 2; while (root.pow(tmp >> 1) == 1) root++; max_base = 0; while (tmp % 2 == 0) tmp >>= 1, max_base++; r.resize(max_base), ir.resize(max_base); for (int i = 0; i < max_base; i++) { r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根 ir[i] = r[i].inverse(); // ir[i] := 1/r[i] } } static void ntt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = n; k >>= 1;) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = w * a[j]; a[i] = x + y, a[j] = x - y; } w *= r[__builtin_ctz(++t)]; } } } static void intt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = 1; k < n; k <<= 1) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = a[j]; a[i] = x + y, a[j] = w * (x - y); } w *= ir[__builtin_ctz(++t)]; } } T inv = T(n).inverse(); for (auto &e : a) e *= inv; } static vector<T> convolve(vector<T> a, vector<T> b) { if (a.empty() || b.empty()) return {}; int k = (int)a.size() + (int)b.size() - 1, n = 1; while (n < k) n <<= 1; a.resize(n), b.resize(n); ntt(a), ntt(b); for (int i = 0; i < n; i++) a[i] *= b[i]; intt(a), a.resize(k); return a; } }; template <typename T> int Number_Theoretic_Transform<T>::max_base = 0; template <typename T> T Number_Theoretic_Transform<T>::root = T(); template <typename T> vector<T> Number_Theoretic_Transform<T>::r = vector<T>(); template <typename T> vector<T> Number_Theoretic_Transform<T>::ir = vector<T>(); using NTT = Number_Theoretic_Transform<mint>; template <typename T> struct Formal_Power_Series : vector<T> { using NTT_ = Number_Theoretic_Transform<T>; using vector<T>::vector; Formal_Power_Series(const vector<T> &f) : vector<T>(f) {} // f(x) mod x^n Formal_Power_Series pre(int n) const { Formal_Power_Series ret(begin(*this), begin(*this) + min((int)this->size(), n)); ret.resize(n, 0); return ret; } // f(1/x)x^{n-1} Formal_Power_Series rev(int n = -1) const { Formal_Power_Series ret = *this; if (n != -1) ret.resize(n, 0); reverse(begin(ret), end(ret)); return ret; } void normalize() { while (!this->empty() && this->back() == 0) this->pop_back(); } Formal_Power_Series operator-() const { Formal_Power_Series ret = *this; for (int i = 0; i < (int)ret.size(); i++) ret[i] = -ret[i]; return ret; } Formal_Power_Series &operator+=(const T &t) { if (this->empty()) this->resize(1, 0); (*this)[0] += t; return *this; } Formal_Power_Series &operator+=(const Formal_Power_Series &g) { if (g.size() > this->size()) this->resize(g.size()); for (int i = 0; i < (int)g.size(); i++) (*this)[i] += g[i]; this->normalize(); return *this; } Formal_Power_Series &operator-=(const T &t) { if (this->empty()) this->resize(1, 0); *this[0] -= t; return *this; } Formal_Power_Series &operator-=(const Formal_Power_Series &g) { if (g.size() > this->size()) this->resize(g.size()); for (int i = 0; i < (int)g.size(); i++) (*this)[i] -= g[i]; this->normalize(); return *this; } Formal_Power_Series &operator*=(const T &t) { for (int i = 0; i < (int)this->size(); i++) (*this)[i] *= t; return *this; } Formal_Power_Series &operator*=(const Formal_Power_Series &g) { if (empty(*this) || empty(g)) { this->clear(); return *this; } return *this = NTT_::convolve(*this, g); } Formal_Power_Series &operator/=(const T &t) { assert(t != 0); T inv = t.inverse(); return *this *= inv; } // f(x) を g(x) で割った商 Formal_Power_Series &operator/=(const Formal_Power_Series &g) { if (g.size() > this->size()) { this->clear(); return *this; } int n = this->size(), m = g.size(); return *this = (rev() * g.rev().inv(n - m + 1)).pre(n - m + 1).rev(); } // f(x) を g(x) で割った余り Formal_Power_Series &operator%=(const Formal_Power_Series &g) { return *this -= (*this / g) * g; } // f(x)/x^k Formal_Power_Series &operator<<=(int k) { Formal_Power_Series ret(k, 0); ret.insert(end(ret), begin(*this), end(*this)); return *this = ret; } // f(x)x^k Formal_Power_Series &operator>>=(int k) { Formal_Power_Series ret; ret.insert(end(ret), begin(*this) + k, end(*this)); return *this = ret; } Formal_Power_Series operator+(const T &x) const { return Formal_Power_Series(*this) += x; } Formal_Power_Series operator+(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) += v; } Formal_Power_Series operator-(const T &x) const { return Formal_Power_Series(*this) -= x; } Formal_Power_Series operator-(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) -= v; } Formal_Power_Series operator*(const T &x) const { return Formal_Power_Series(*this) *= x; } Formal_Power_Series operator*(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) *= v; } Formal_Power_Series operator/(const T &x) const { return Formal_Power_Series(*this) /= x; } Formal_Power_Series operator/(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) /= v; } Formal_Power_Series operator%(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) %= v; } Formal_Power_Series operator<<(int x) const { return Formal_Power_Series(*this) <<= x; } Formal_Power_Series operator>>(int x) const { return Formal_Power_Series(*this) >>= x; } // f(c) T val(const T &c) const { T ret = 0; for (int i = (int)this->size() - 1; i >= 0; i--) ret *= c, ret += (*this)[i]; return ret; } // df/dx Formal_Power_Series derivative() const { if (empty(*this)) return *this; int n = this->size(); Formal_Power_Series ret(n - 1); for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * i; return ret; } // ∫f(x)dx Formal_Power_Series integral() const { if (empty(*this)) return *this; int n = this->size(); vector<T> inv(n + 1, 0); inv[1] = 1; int mod = T::get_mod(); for (int i = 2; i <= n; i++) inv[i] = -inv[mod % i] * T(mod / i); Formal_Power_Series ret(n + 1, 0); for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] * inv[i + 1]; return ret; } // 1/f(x) mod x^n (f[0] != 0) Formal_Power_Series inv(int n = -1) const { assert((*this)[0] != 0); if (n == -1) n = this->size(); Formal_Power_Series ret(1, (*this)[0].inverse()); for (int m = 1; m < n; m <<= 1) { Formal_Power_Series f = pre(2 * m), g = ret; f.resize(2 * m), g.resize(2 * m); NTT_::ntt(f), NTT_::ntt(g); Formal_Power_Series h(2 * m); for (int i = 0; i < 2 * m; i++) h[i] = f[i] * g[i]; NTT_::intt(h); for (int i = 0; i < m; i++) h[i] = 0; NTT_::ntt(h); for (int i = 0; i < 2 * m; i++) h[i] *= g[i]; NTT_::intt(h); for (int i = 0; i < m; i++) h[i] = 0; ret -= h; } ret.resize(n); return ret; } // log(f(x)) mod x^n (f[0] = 1) Formal_Power_Series log(int n = -1) const { assert((*this)[0] == 1); if (n == -1) n = this->size(); Formal_Power_Series ret = (derivative() * inv(n)).pre(n - 1).integral(); ret.resize(n); return ret; } // exp(f(x)) mod x^n (f[0] = 0) Formal_Power_Series exp(int n = -1) const { assert((*this)[0] == 0); if (n == -1) n = this->size(); vector<T> inv(2 * n + 1, 0); inv[1] = 1; int mod = T::get_mod(); for (int i = 2; i <= 2 * n; i++) inv[i] = -inv[mod % i] * T(mod / i); auto inplace_integral = [inv](Formal_Power_Series &f) { if (empty(f)) return; int n = f.size(); f.insert(begin(f), 0); for (int i = 1; i <= n; i++) f[i] *= inv[i]; }; auto inplace_derivative = [](Formal_Power_Series &f) { if (empty(f)) return; int n = f.size(); f.erase(begin(f)); for (int i = 0; i < n - 1; i++) f[i] *= T(i + 1); }; Formal_Power_Series ret{1, this->size() > 1 ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < n; m *= 2) { auto y = ret; y.resize(2 * m); NTT_::ntt(y); z1 = z2; Formal_Power_Series z(m); for (int i = 0; i < m; i++) z[i] = y[i] * z1[i]; NTT_::intt(z); fill(begin(z), begin(z) + m / 2, 0); NTT_::ntt(z); for (int i = 0; i < m; i++) z[i] *= -z1[i]; NTT_::intt(z); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c, z2.resize(2 * m); NTT_::ntt(z2); Formal_Power_Series x(begin(*this), begin(*this) + min((int)this->size(), m)); inplace_derivative(x); x.resize(m, 0); NTT_::ntt(x); for (int i = 0; i < m; i++) x[i] *= y[i]; NTT_::intt(x); x -= ret.derivative(), x.resize(2 * m); for (int i = 0; i < m - 1; i++) x[m + i] = x[i], x[i] = 0; NTT_::ntt(x); for (int i = 0; i < 2 * m; i++) x[i] *= z2[i]; NTT_::intt(x); x.pop_back(); inplace_integral(x); for (int i = m; i < min((int)this->size(), 2 * m); i++) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, 0); NTT_::ntt(x); for (int i = 0; i < 2 * m; i++) x[i] *= y[i]; NTT_::intt(x); ret.insert(end(ret), begin(x) + m, end(x)); } ret.resize(n); return ret; } // f(x)^k mod x^n Formal_Power_Series pow(long long k, int n = -1) const { if (n == -1) n = this->size(); int m = this->size(); for (int i = 0; i < m; i++) { if ((*this)[i] == 0) continue; T rev = (*this)[i].inverse(); Formal_Power_Series C(*this * rev), D(m - i, 0); for (int j = i; j < m; j++) D[j - i] = C[j]; D = (D.log() * k).exp() * ((*this)[i].pow(k)); Formal_Power_Series E(n, 0); if (i > 0 && k > n / i) return E; long long S = i * k; for (int j = 0; j + S < n && j < D.size(); j++) E[j + S] = D[j]; E.resize(n); return E; } return Formal_Power_Series(n, 0); } // f(x+c) Formal_Power_Series Taylor_shift(T c) const { int n = this->size(); vector<T> ifac(n, 1); Formal_Power_Series f(n), g(n); for (int i = 0; i < n; i++) { f[n - 1 - i] = (*this)[i] * ifac[n - 1]; if (i < n - 1) ifac[n - 1] *= i + 1; } ifac[n - 1] = ifac[n - 1].inverse(); for (int i = n - 1; i > 0; i--) ifac[i - 1] = ifac[i] * i; T pw = 1; for (int i = 0; i < n; i++) { g[i] = pw * ifac[i]; pw *= c; } f *= g; Formal_Power_Series b(n); for (int i = 0; i < n; i++) b[i] = f[n - 1 - i] * ifac[i]; return b; } }; using fps = Formal_Power_Series<mint>; int main(){ int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++){ cin >> A[i]; } int S = 0; for (int i = 0; i < N; i++){ S += A[i]; } long long ans = S; for (int i = 0; i < N - 1; i++){ ans *= 2; ans %= MOD; } if (S >= MOD2){ vector<int> cnt(10001, 0); for (int i = 0; i < N; i++){ cnt[A[i]]++; } long long T = S - MOD2; vector<long long> log_f(T + 1, 0); for (int i = 1; i <= 10000; i++){ for (int j = 1; i * j <= T; j++){ if (j % 2 == 1){ log_f[i * j] += cnt[i] * modinv(j); } else { log_f[i * j] += MOD - cnt[i] * modinv(j); } log_f[i * j] %= MOD; } } fps f(T + 1); for (int i = 0; i <= T; i++){ f[i] = log_f[i]; } fps g = f.exp(); for (int i = 0; i <= T; i++){ long long x = g[i].x; ans += MOD - x * MOD2 % MOD; } ans %= MOD; } cout << ans << endl; }