結果
問題 | No.2062 Sum of Subset mod 999630629 |
ユーザー | Forested |
提出日時 | 2022-08-26 22:09:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 19,874 bytes |
コンパイル時間 | 2,102 ms |
コンパイル使用メモリ | 158,816 KB |
実行使用メモリ | 30,548 KB |
最終ジャッジ日時 | 2024-10-13 22:46:08 |
合計ジャッジ時間 | 22,911 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 472 ms
29,376 KB |
testcase_01 | AC | 467 ms
29,636 KB |
testcase_02 | AC | 482 ms
29,504 KB |
testcase_03 | AC | 477 ms
29,508 KB |
testcase_04 | AC | 467 ms
29,504 KB |
testcase_05 | AC | 473 ms
29,504 KB |
testcase_06 | AC | 481 ms
29,484 KB |
testcase_07 | AC | 469 ms
29,504 KB |
testcase_08 | AC | 967 ms
30,412 KB |
testcase_09 | AC | 966 ms
30,176 KB |
testcase_10 | AC | 958 ms
30,196 KB |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
ソースコード
#ifndef LOCAL #define FAST_IO #endif // ===== template.hpp ===== #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i) #define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; using f64 = double; using f80 = long double; template <typename T> using Vec = vector<T>; template <typename T> bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template <typename T> bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } istream &operator>>(istream &is, i128 &x) { i64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, i128 x) { os << (i64) x; return os; } istream &operator>>(istream &is, u128 &x) { u64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, u128 x) { os << (u64) x; return os; } [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; // ===== template.hpp ===== #ifdef DEBUGF #include "cpl/template/debug.hpp" #else #define DBG(x) (void) 0 #endif // ===== number_theoretic_transform.hpp ===== #include <array> #include <vector> // ===== mod_int.hpp ===== #include <cassert> #include <iostream> #include <type_traits> // ===== utils.hpp ===== constexpr bool is_prime(unsigned n) { if (n == 0 || n == 1) { return false; } for (unsigned i = 2; i * i <= n; ++i) { if (n % i == 0) { return false; } } return true; } constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) { unsigned ret = 1, self = x; while (y != 0) { if (y & 1) { ret = (unsigned) ((unsigned long long) ret * self % mod); } self = (unsigned) ((unsigned long long) self * self % mod); y /= 2; } return ret; } template <unsigned mod> constexpr unsigned primitive_root() { static_assert(is_prime(mod), "`mod` must be a prime number."); if (mod == 2) { return 1; } unsigned primes[32] = {}; int it = 0; { unsigned m = mod - 1; for (unsigned i = 2; i * i <= m; ++i) { if (m % i == 0) { primes[it++] = i; while (m % i == 0) { m /= i; } } } if (m != 1) { primes[it++] = m; } } for (unsigned i = 2; i < mod; ++i) { bool ok = true; for (int j = 0; j < it; ++j) { if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) { ok = false; break; } } if (ok) return i; } return 0; } // y >= 1 template <typename T> constexpr T safe_mod(T x, T y) { x %= y; if (x < 0) { x += y; } return x; } // y != 0 template <typename T> constexpr T floor_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return x / y; } else { return -((-x + y - 1) / y); } } // y != 0 template <typename T> constexpr T ceil_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return (x + y - 1) / y; } else { return -(-x / y); } } // ===== utils.hpp ===== template <unsigned mod> class ModInt { static_assert(mod != 0, "`mod` must not be equal to 0."); static_assert( mod < (1u << 31), "`mod` must be less than (1u << 31) = 2147483648."); unsigned val; public: constexpr ModInt() : val(0) {} template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr> constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {} template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr> constexpr ModInt(T x) : val((unsigned) (x % mod)) {} static constexpr ModInt raw(unsigned x) { ModInt<mod> ret; ret.val = x; return ret; } constexpr unsigned get_val() const { return val; } constexpr ModInt operator+() const { return *this; } constexpr ModInt operator-() const { return ModInt<mod>(0u) - *this; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if (val >= mod) val -= mod; return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if (val < rhs.val) val += mod; val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { val = (unsigned long long)val * rhs.inv().val % mod; return *this; } friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) += rhs; } friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) -= rhs; } friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) *= rhs; } friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) /= rhs; } constexpr ModInt pow(unsigned long long x) const { ModInt<mod> ret = ModInt<mod>::raw(1); ModInt<mod> self = *this; while (x != 0) { if (x & 1) ret *= self; self *= self; x >>= 1; } return ret; } constexpr ModInt inv() const { static_assert(is_prime(mod), "`mod` must be a prime number."); assert(val != 0); return this->pow(mod - 2); } friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) { is >> x.val; x.val %= mod; return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) { os << x.val; return os; } friend bool operator==(const ModInt &lhs, const ModInt &rhs) { return lhs.val == rhs.val; } friend bool operator!=(const ModInt &lhs, const ModInt &rhs) { return lhs.val != rhs.val; } }; [[maybe_unused]] constexpr unsigned mod998244353 = 998244353; [[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007; // ===== mod_int.hpp ===== // ===== bitop.hpp ===== template <typename T, typename U> bool ith_bit(T n, U i) { return (n & ((T) 1 << i)) != 0; } int popcount(int x) { return __builtin_popcount(x); } unsigned popcount(unsigned x) { return __builtin_popcount(x); } long long popcount(long long x) { return __builtin_popcountll(x); } unsigned long long popcount(unsigned long long x) { return __builtin_popcountll(x); } // x must not be 0 int clz(int x) { return __builtin_clz(x); } unsigned clz(unsigned x) { return __builtin_clz(x); } long long clz(long long x) { return __builtin_clzll(x); } unsigned long long clz(unsigned long long x) { return __builtin_clzll(x); } // x must not be 0 int ctz(int x) { return __builtin_ctz(x); } unsigned ctz(unsigned int x) { return __builtin_ctz(x); } long long ctz(long long x) { return __builtin_ctzll(x); } unsigned long long ctz(unsigned long long x) { return __builtin_ctzll(x); } int floor_log2(int x) { return 31 - clz(x); } unsigned floor_log2(unsigned x) { return 31 - clz(x); } long long floor_log2(long long x) { return 63 - clz(x); } unsigned long long floor_log2(unsigned long long x) { return 63 - clz(x); } template <typename T> T mask_n(T x, T n) { T mask = ((T) 1 << n) - 1; return x & mask; } // ===== bitop.hpp ===== template <unsigned mod> class NumberTheoreticTransform { static constexpr int calc_ex() { unsigned m = mod - 1; int ret = 0; while (!(m & 1)) { m >>= 1; ++ret; } return ret; } static constexpr int max_ex = calc_ex(); std::array<ModInt<mod>, max_ex + 1> root; std::array<ModInt<mod>, max_ex + 1> inv_root; std::array<ModInt<mod>, max_ex + 2> inc; std::array<ModInt<mod>, max_ex + 2> inv_inc; public: void dft(std::vector<ModInt<mod>> &a) const { int n = (int) a.size(); int ex = ctz(n); for (int i = 0; i < ex; ++i) { int pr = 1 << (ex - 1 - i); int len = 1 << i; ModInt<mod> zeta(1); for (int j = 0; j < len; ++j) { int offset = j << (ex - i); for (int k = 0; k < pr; ++k) { ModInt<mod> l = a[offset + k]; ModInt<mod> r = a[offset + k + pr] * zeta; a[offset + k] = l + r; a[offset + k + pr] = l - r; } zeta *= inc[ctz(~j)]; } } } void idft(std::vector<ModInt<mod>> &a) const { int n = (int) a.size(); int ex = ctz(n); for (int i = ex - 1; i >= 0; --i) { int pr = 1 << (ex - 1 - i); int len = 1 << i; ModInt<mod> zeta(1); for (int j = 0; j < len; ++j) { int offset = j << (ex - i); for (int k = 0; k < pr; ++k) { ModInt<mod> l = a[offset + k]; ModInt<mod> r = a[offset + k + pr]; a[offset + k] = l + r; a[offset + k + pr] = (l - r) * zeta; } zeta *= inv_inc[ctz(~j)]; } } ModInt<mod> inv = ModInt<mod>::raw((unsigned) a.size()).inv(); for (ModInt<mod> &ele : a) { ele *= inv; } } constexpr NumberTheoreticTransform() : root(), inv_root() { ModInt<mod> g = ModInt<mod>::raw(primitive_root<mod>()).pow((mod - 1) >> max_ex); root[max_ex] = g; inv_root[max_ex] = g.inv(); for (int i = max_ex; i > 0; --i) { root[i - 1] = root[i] * root[i]; inv_root[i - 1] = inv_root[i] * inv_root[i]; } ModInt<mod> prod(1); for (int i = 2; i <= max_ex; ++i) { inc[i - 2] = root[i] * prod; prod *= inv_root[i]; } prod = ModInt<mod>(1); for (int i = 2; i <= max_ex; ++i) { inv_inc[i - 2] = inv_root[i] * prod; prod *= root[i]; } } std::vector<ModInt<mod>> multiply( std::vector<ModInt<mod>> a, std::vector<ModInt<mod>> b) const { if (a.empty() || b.empty()) return std::vector<ModInt<mod>>(); int siz = 1; int s = (int) (a.size() + b.size()); while (siz < s) { siz <<= 1; } a.resize(siz, ModInt<mod>()); b.resize(siz, ModInt<mod>()); dft(a); dft(b); for (int i = 0; i < siz; ++i) { a[i] *= b[i]; } idft(a); a.resize(s - 1); return a; } }; template <unsigned mod> class NTTMul { static constexpr NumberTheoreticTransform<mod> ntt = NumberTheoreticTransform<mod>(); public: static void dft(std::vector<ModInt<mod>> &a) { ntt.dft(a); } static void idft(std::vector<ModInt<mod>> &a) { ntt.idft(a); } static std::vector<ModInt<mod>> mul( std::vector<ModInt<mod>> lhs, std::vector<ModInt<mod>> rhs) { return ntt.multiply(std::move(lhs), std::move(rhs)); } }; // ===== number_theoretic_transform.hpp ===== // ===== fps_exp.hpp ===== // ===== polynomial.hpp ===== #include <vector> #include <utility> #include <cassert> #include <algorithm> template <typename T, typename Mul> class Polynomial { std::vector<T> coeff; public: using This = Polynomial<T, Mul>; Polynomial() : coeff() {} Polynomial(int n) : coeff(n, T(0)) {} Polynomial(std::vector<T> c) : coeff(std::move(c)) {} const std::vector<T> &vec() const { return coeff; } int size() const { return (int) coeff.size(); } const T &operator[](int idx) const { return coeff[idx]; } T &operator[](int idx) { return coeff[idx]; } T at(int idx) const { if (idx < size()) { return coeff[idx]; } else { return T(0); } } void pre_(int n) { assert(n >= 0); coeff.resize(n, T(0)); } This pre(int n) const { This tmp(*this); tmp.pre_(n); return tmp; } T operator()(const T &x) const { T p(1), sum(0); for (const T &ele : coeff) { sum += p * ele; p *= x; } return sum; } This &operator+=(const This &rhs) { if (coeff.size() < rhs.coeff.size()) { coeff.resize(rhs.coeff.size(), T(0)); } for (int i = 0; i < (int) rhs.coeff.size(); ++i) { coeff[i] += rhs.coeff[i]; } return *this; } friend This operator+(This lhs, const This &rhs) { lhs += rhs; return lhs; } This &operator-=(const This &rhs) { if (coeff.size() < rhs.coeff.size()) { coeff.resize(rhs.coeff.size(), T(0)); } for (int i = 0; i < (int) rhs.coeff.size(); ++i) { coeff[i] -= rhs.coeff[i]; } return *this; } friend This operator-(This lhs, const This &rhs) { lhs -= rhs; return lhs; } This &operator*=(This rhs) { coeff = Mul::mul(std::move(coeff), std::move(rhs.coeff)); return *this; } friend This operator*(This lhs, This rhs) { return This(Mul::mul(std::move(lhs.coeff), std::move(rhs.coeff))); } This diff() const { if (coeff.empty()) { return This(); } std::vector<T> c(coeff.size() - 1); for (int i = 0; i < (int) c.size(); ++i) { c[i] = T(i + 1) * coeff[i + 1]; } return This(c); } This integ() const { std::vector<T> c(coeff.size() + 1, T(0)); for (int i = 0; i < (int) coeff.size(); ++i) { c[i + 1] = coeff[i] / T(i + 1); } return This(c); } }; // ===== polynomial.hpp ===== template <typename T, typename Mul> Polynomial<T, Mul> fps_exp(const Polynomial<T, Mul> &h, int sz = -1) { const std::vector<T> &coeff = h.vec(); assert(!coeff.empty() && coeff[0] == T(0)); if (sz == -1) { sz = (int) coeff.size(); } assert(sz >= 0); std::vector<T> f({T(1)}); std::vector<T> g({T(1)}); std::vector<T> dft_f_({T(1), T(1)}); while ((int) f.size() < sz) { int n = (int) f.size(); // F_{2n}(g_0) std::vector<T> dft_g_2 = g; dft_g_2.resize(2 * n, T(0)); Mul::dft(dft_g_2); // \delta std::vector<T> delta(n, T(0)); for (int i = 0; i < n; ++i) { delta[i] = dft_f_[i] * dft_g_2[i]; } Mul::idft(delta); delta.resize(2 * n); for (int i = 0; i < n; ++i) { std::swap(delta[i], delta[n + i]); } delta[n] -= T(1); // F_n(D(f_0)) std::vector<T> dft_d_f(n, T(0)); for (int i = 0; i < n - 1; ++i) { dft_d_f[i] = T(i + 1) * f[i + 1]; } Mul::dft(dft_d_f); // D(f_0) g_0 std::vector<T> d_f_g(n, T(0)); for (int i = 0; i < n; ++i) { d_f_g[i] = dft_d_f[i] * dft_g_2[i]; } Mul::idft(d_f_g); d_f_g.resize(2 * n, T(0)); for (int i = 0; i < n - 1; ++i) { T tmp = T(i + 1) * h.at(i + 1); d_f_g[n + i] = d_f_g[i] - tmp; d_f_g[i] = tmp; } // \delta D(h_0) std::vector<T> dft_delta = delta; Mul::dft(dft_delta); std::vector<T> delta_d_h(2 * n); for (int i = 0; i < n - 1; ++i) { delta_d_h[i] = T(i + 1) * h.at(i + 1); } Mul::dft(delta_d_h); for (int i = 0; i < 2 * n; ++i) { delta_d_h[i] *= dft_delta[i]; } Mul::idft(delta_d_h); std::fill(delta_d_h.begin(), delta_d_h.begin() + n, T(0)); // \epsilon std::vector<T> eps = std::move(d_f_g); for (int i = 0; i < 2 * n; ++i) { eps[i] -= T(i + 1) * h.at(i + 1) + delta_d_h[i]; } for (int i = 2 * n - 1; i > 0; --i) { eps[i] = eps[i - 1] / T(i); } eps[0] = T(0); // \epsilon f_0 std::vector<T> dft_eps = eps; Mul::dft(dft_eps); std::vector<T> eps_f(2 * n); for (int i = 0; i < 2 * n; ++i) { eps_f[i] = dft_eps[i] * dft_f_[i]; } Mul::idft(eps_f); std::fill(eps_f.begin(), eps_f.begin() + n - 1, T(0)); // update f f.resize(2 * n, T(0)); for (int i = 0; i < 2 * n; ++i) { f[i] -= eps_f[i]; } if ((int) f.size() >= sz) { break; } // update F_{2n}(f) dft_f_ = f; dft_f_.resize(4 * n); Mul::dft(dft_f_); // update g std::vector<T> fg(dft_f_.begin(), dft_f_.begin() + 2 * n); for (int i = 0; i < 2 * n; ++i) { fg[i] *= dft_g_2[i]; } Mul::idft(fg); std::fill(fg.begin(), fg.begin() + n, T(0)); Mul::dft(fg); for (int i = 0; i < 2 * n; ++i) { fg[i] *= dft_g_2[i]; } Mul::idft(fg); g.resize(2 * n); for (int i = n; i < 2 * n; ++i) { g[i] = -fg[i]; } } f.resize(sz); return Polynomial<T, Mul>(f); } // ===== fps_exp.hpp ===== constexpr u32 MOD = 998244353; using Mint = ModInt<MOD>; using FPS = Polynomial<Mint, NTTMul<MOD>>; int main() { i32 n; cin >> n; Vec<i32> a(n); REP(i, n) { cin >> a[i]; } Vec<i32> b(n); REP(i, n) { b[i] = 10000 - a[i]; } constexpr i32 TGT = 369371; Vec<Mint> cnt(TGT + 1); REP(i, n) { cnt[b[i]] += Mint(1); } FPS plog(TGT + 1); REP(i, 1, TGT + 1) { if (cnt[i] == Mint()) { continue; } for (i32 j = 1; i * j <= TGT; ++j) { if (j % 2 == 1) { plog[i * j] -= cnt[i] / Mint(j); } else { plog[i * j] += cnt[i] / Mint(j); } } } FPS pexp = fps_exp(plog); Mint sum; REP(i, TGT + 1) { if (10000 * n - i >= 999630629) { sum += pexp[i]; } } cerr << sum << '\n'; Mint ans; REP(i, n) { ans += Mint(a[i]) * Mint(2).pow(n - 1); } ans -= Mint(999630629) * sum; cout << ans << '\n'; }