結果
| 問題 |
No.2062 Sum of Subset mod 999630629
|
| コンテスト | |
| ユーザー |
Forested
|
| 提出日時 | 2022-08-26 22:33:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 20,130 bytes |
| コンパイル時間 | 2,209 ms |
| コンパイル使用メモリ | 155,644 KB |
| 最終ジャッジ日時 | 2025-01-31 05:13:03 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 8 WA * 21 |
ソースコード
#ifndef LOCAL
#define FAST_IO
#endif
// ===== template.hpp =====
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i)
#define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = __uint128_t;
using i32 = signed int;
using i64 = signed long long;
using i128 = __int128_t;
using f64 = double;
using f80 = long double;
template <typename T>
using Vec = vector<T>;
template <typename T>
bool chmin(T &x, const T &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
istream &operator>>(istream &is, i128 &x) {
i64 v;
is >> v;
x = v;
return is;
}
ostream &operator<<(ostream &os, i128 x) {
os << (i64) x;
return os;
}
istream &operator>>(istream &is, u128 &x) {
u64 v;
is >> v;
x = v;
return is;
}
ostream &operator<<(ostream &os, u128 x) {
os << (u64) x;
return os;
}
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
SetUpIO() {
#ifdef FAST_IO
ios::sync_with_stdio(false);
cin.tie(nullptr);
#endif
cout << fixed << setprecision(15);
}
} set_up_io;
// ===== template.hpp =====
#ifdef DEBUGF
#include "cpl/template/debug.hpp"
#else
#define DBG(x) (void) 0
#endif
// ===== number_theoretic_transform.hpp =====
#include <array>
#include <vector>
// ===== mod_int.hpp =====
#include <cassert>
#include <iostream>
#include <type_traits>
// ===== utils.hpp =====
constexpr bool is_prime(unsigned n) {
if (n == 0 || n == 1) {
return false;
}
for (unsigned i = 2; i * i <= n; ++i) {
if (n % i == 0) {
return false;
}
}
return true;
}
constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
unsigned ret = 1, self = x;
while (y != 0) {
if (y & 1) {
ret = (unsigned) ((unsigned long long) ret * self % mod);
}
self = (unsigned) ((unsigned long long) self * self % mod);
y /= 2;
}
return ret;
}
template <unsigned mod>
constexpr unsigned primitive_root() {
static_assert(is_prime(mod), "`mod` must be a prime number.");
if (mod == 2) {
return 1;
}
unsigned primes[32] = {};
int it = 0;
{
unsigned m = mod - 1;
for (unsigned i = 2; i * i <= m; ++i) {
if (m % i == 0) {
primes[it++] = i;
while (m % i == 0) {
m /= i;
}
}
}
if (m != 1) {
primes[it++] = m;
}
}
for (unsigned i = 2; i < mod; ++i) {
bool ok = true;
for (int j = 0; j < it; ++j) {
if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
ok = false;
break;
}
}
if (ok)
return i;
}
return 0;
}
// y >= 1
template <typename T>
constexpr T safe_mod(T x, T y) {
x %= y;
if (x < 0) {
x += y;
}
return x;
}
// y != 0
template <typename T>
constexpr T floor_div(T x, T y) {
if (y < 0) {
x *= -1;
y *= -1;
}
if (x >= 0) {
return x / y;
} else {
return -((-x + y - 1) / y);
}
}
// y != 0
template <typename T>
constexpr T ceil_div(T x, T y) {
if (y < 0) {
x *= -1;
y *= -1;
}
if (x >= 0) {
return (x + y - 1) / y;
} else {
return -(-x / y);
}
}
// ===== utils.hpp =====
template <unsigned mod>
class ModInt {
static_assert(mod != 0, "`mod` must not be equal to 0.");
static_assert(
mod < (1u << 31),
"`mod` must be less than (1u << 31) = 2147483648.");
unsigned val;
public:
constexpr ModInt() : val(0) {}
template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {}
template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
constexpr ModInt(T x) : val((unsigned) (x % mod)) {}
static constexpr ModInt raw(unsigned x) {
ModInt<mod> ret;
ret.val = x;
return ret;
}
constexpr unsigned get_val() const {
return val;
}
constexpr ModInt operator+() const {
return *this;
}
constexpr ModInt operator-() const {
return ModInt<mod>(0u) - *this;
}
constexpr ModInt &operator+=(const ModInt &rhs) {
val += rhs.val;
if (val >= mod)
val -= mod;
return *this;
}
constexpr ModInt &operator-=(const ModInt &rhs) {
if (val < rhs.val)
val += mod;
val -= rhs.val;
return *this;
}
constexpr ModInt &operator*=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.val % mod;
return *this;
}
constexpr ModInt &operator/=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.inv().val % mod;
return *this;
}
friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) += rhs;
}
friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) -= rhs;
}
friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) *= rhs;
}
friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) /= rhs;
}
constexpr ModInt pow(unsigned long long x) const {
ModInt<mod> ret = ModInt<mod>::raw(1);
ModInt<mod> self = *this;
while (x != 0) {
if (x & 1)
ret *= self;
self *= self;
x >>= 1;
}
return ret;
}
constexpr ModInt inv() const {
static_assert(is_prime(mod), "`mod` must be a prime number.");
assert(val != 0);
return this->pow(mod - 2);
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
is >> x.val;
x.val %= mod;
return is;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
os << x.val;
return os;
}
friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
return lhs.val == rhs.val;
}
friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
return lhs.val != rhs.val;
}
};
[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;
// ===== mod_int.hpp =====
// ===== bitop.hpp =====
template <typename T, typename U>
bool ith_bit(T n, U i) {
return (n & ((T) 1 << i)) != 0;
}
int popcount(int x) {
return __builtin_popcount(x);
}
unsigned popcount(unsigned x) {
return __builtin_popcount(x);
}
long long popcount(long long x) {
return __builtin_popcountll(x);
}
unsigned long long popcount(unsigned long long x) {
return __builtin_popcountll(x);
}
// x must not be 0
int clz(int x) {
return __builtin_clz(x);
}
unsigned clz(unsigned x) {
return __builtin_clz(x);
}
long long clz(long long x) {
return __builtin_clzll(x);
}
unsigned long long clz(unsigned long long x) {
return __builtin_clzll(x);
}
// x must not be 0
int ctz(int x) {
return __builtin_ctz(x);
}
unsigned ctz(unsigned int x) {
return __builtin_ctz(x);
}
long long ctz(long long x) {
return __builtin_ctzll(x);
}
unsigned long long ctz(unsigned long long x) {
return __builtin_ctzll(x);
}
int floor_log2(int x) {
return 31 - clz(x);
}
unsigned floor_log2(unsigned x) {
return 31 - clz(x);
}
long long floor_log2(long long x) {
return 63 - clz(x);
}
unsigned long long floor_log2(unsigned long long x) {
return 63 - clz(x);
}
template <typename T>
T mask_n(T x, T n) {
T mask = ((T) 1 << n) - 1;
return x & mask;
}
// ===== bitop.hpp =====
template <unsigned mod>
class NumberTheoreticTransform {
static constexpr int calc_ex() {
unsigned m = mod - 1;
int ret = 0;
while (!(m & 1)) {
m >>= 1;
++ret;
}
return ret;
}
static constexpr int max_ex = calc_ex();
std::array<ModInt<mod>, max_ex + 1> root;
std::array<ModInt<mod>, max_ex + 1> inv_root;
std::array<ModInt<mod>, max_ex + 2> inc;
std::array<ModInt<mod>, max_ex + 2> inv_inc;
public:
void dft(std::vector<ModInt<mod>> &a) const {
int n = (int) a.size();
int ex = ctz(n);
for (int i = 0; i < ex; ++i) {
int pr = 1 << (ex - 1 - i);
int len = 1 << i;
ModInt<mod> zeta(1);
for (int j = 0; j < len; ++j) {
int offset = j << (ex - i);
for (int k = 0; k < pr; ++k) {
ModInt<mod> l = a[offset + k];
ModInt<mod> r = a[offset + k + pr] * zeta;
a[offset + k] = l + r;
a[offset + k + pr] = l - r;
}
zeta *= inc[ctz(~j)];
}
}
}
void idft(std::vector<ModInt<mod>> &a) const {
int n = (int) a.size();
int ex = ctz(n);
for (int i = ex - 1; i >= 0; --i) {
int pr = 1 << (ex - 1 - i);
int len = 1 << i;
ModInt<mod> zeta(1);
for (int j = 0; j < len; ++j) {
int offset = j << (ex - i);
for (int k = 0; k < pr; ++k) {
ModInt<mod> l = a[offset + k];
ModInt<mod> r = a[offset + k + pr];
a[offset + k] = l + r;
a[offset + k + pr] = (l - r) * zeta;
}
zeta *= inv_inc[ctz(~j)];
}
}
ModInt<mod> inv = ModInt<mod>::raw((unsigned) a.size()).inv();
for (ModInt<mod> &ele : a) {
ele *= inv;
}
}
constexpr NumberTheoreticTransform() : root(), inv_root() {
ModInt<mod> g = ModInt<mod>::raw(primitive_root<mod>()).pow((mod - 1) >> max_ex);
root[max_ex] = g;
inv_root[max_ex] = g.inv();
for (int i = max_ex; i > 0; --i) {
root[i - 1] = root[i] * root[i];
inv_root[i - 1] = inv_root[i] * inv_root[i];
}
ModInt<mod> prod(1);
for (int i = 2; i <= max_ex; ++i) {
inc[i - 2] = root[i] * prod;
prod *= inv_root[i];
}
prod = ModInt<mod>(1);
for (int i = 2; i <= max_ex; ++i) {
inv_inc[i - 2] = inv_root[i] * prod;
prod *= root[i];
}
}
std::vector<ModInt<mod>> multiply(
std::vector<ModInt<mod>> a,
std::vector<ModInt<mod>> b) const {
if (a.empty() || b.empty())
return std::vector<ModInt<mod>>();
int siz = 1;
int s = (int) (a.size() + b.size());
while (siz < s) {
siz <<= 1;
}
a.resize(siz, ModInt<mod>());
b.resize(siz, ModInt<mod>());
dft(a);
dft(b);
for (int i = 0; i < siz; ++i) {
a[i] *= b[i];
}
idft(a);
a.resize(s - 1);
return a;
}
};
template <unsigned mod>
class NTTMul {
static constexpr NumberTheoreticTransform<mod> ntt = NumberTheoreticTransform<mod>();
public:
static void dft(std::vector<ModInt<mod>> &a) {
ntt.dft(a);
}
static void idft(std::vector<ModInt<mod>> &a) {
ntt.idft(a);
}
static std::vector<ModInt<mod>> mul(
std::vector<ModInt<mod>> lhs,
std::vector<ModInt<mod>> rhs) {
return ntt.multiply(std::move(lhs), std::move(rhs));
}
};
// ===== number_theoretic_transform.hpp =====
// ===== fps_exp.hpp =====
// ===== polynomial.hpp =====
#include <vector>
#include <utility>
#include <cassert>
#include <algorithm>
template <typename T, typename Mul>
class Polynomial {
std::vector<T> coeff;
public:
using This = Polynomial<T, Mul>;
Polynomial() : coeff() {}
Polynomial(int n) : coeff(n, T(0)) {}
Polynomial(std::vector<T> c) : coeff(std::move(c)) {}
const std::vector<T> &vec() const {
return coeff;
}
int size() const {
return (int) coeff.size();
}
const T &operator[](int idx) const {
return coeff[idx];
}
T &operator[](int idx) {
return coeff[idx];
}
T at(int idx) const {
if (idx < size()) {
return coeff[idx];
} else {
return T(0);
}
}
void pre_(int n) {
assert(n >= 0);
coeff.resize(n, T(0));
}
This pre(int n) const {
This tmp(*this);
tmp.pre_(n);
return tmp;
}
T operator()(const T &x) const {
T p(1), sum(0);
for (const T &ele : coeff) {
sum += p * ele;
p *= x;
}
return sum;
}
This &operator+=(const This &rhs) {
if (coeff.size() < rhs.coeff.size()) {
coeff.resize(rhs.coeff.size(), T(0));
}
for (int i = 0; i < (int) rhs.coeff.size(); ++i) {
coeff[i] += rhs.coeff[i];
}
return *this;
}
friend This operator+(This lhs, const This &rhs) {
lhs += rhs;
return lhs;
}
This &operator-=(const This &rhs) {
if (coeff.size() < rhs.coeff.size()) {
coeff.resize(rhs.coeff.size(), T(0));
}
for (int i = 0; i < (int) rhs.coeff.size(); ++i) {
coeff[i] -= rhs.coeff[i];
}
return *this;
}
friend This operator-(This lhs, const This &rhs) {
lhs -= rhs;
return lhs;
}
This &operator*=(This rhs) {
coeff = Mul::mul(std::move(coeff), std::move(rhs.coeff));
return *this;
}
friend This operator*(This lhs, This rhs) {
return This(Mul::mul(std::move(lhs.coeff), std::move(rhs.coeff)));
}
This diff() const {
if (coeff.empty()) {
return This();
}
std::vector<T> c(coeff.size() - 1);
for (int i = 0; i < (int) c.size(); ++i) {
c[i] = T(i + 1) * coeff[i + 1];
}
return This(c);
}
This integ() const {
std::vector<T> c(coeff.size() + 1, T(0));
for (int i = 0; i < (int) coeff.size(); ++i) {
c[i + 1] = coeff[i] / T(i + 1);
}
return This(c);
}
};
// ===== polynomial.hpp =====
template <typename T, typename Mul>
Polynomial<T, Mul> fps_exp(const Polynomial<T, Mul> &h, int sz = -1) {
const std::vector<T> &coeff = h.vec();
assert(!coeff.empty() && coeff[0] == T(0));
if (sz == -1) {
sz = (int) coeff.size();
}
assert(sz >= 0);
std::vector<T> f({T(1)});
std::vector<T> g({T(1)});
std::vector<T> dft_f_({T(1), T(1)});
while ((int) f.size() < sz) {
int n = (int) f.size();
// F_{2n}(g_0)
std::vector<T> dft_g_2 = g;
dft_g_2.resize(2 * n, T(0));
Mul::dft(dft_g_2);
// \delta
std::vector<T> delta(n, T(0));
for (int i = 0; i < n; ++i) {
delta[i] = dft_f_[i] * dft_g_2[i];
}
Mul::idft(delta);
delta.resize(2 * n);
for (int i = 0; i < n; ++i) {
std::swap(delta[i], delta[n + i]);
}
delta[n] -= T(1);
// F_n(D(f_0))
std::vector<T> dft_d_f(n, T(0));
for (int i = 0; i < n - 1; ++i) {
dft_d_f[i] = T(i + 1) * f[i + 1];
}
Mul::dft(dft_d_f);
// D(f_0) g_0
std::vector<T> d_f_g(n, T(0));
for (int i = 0; i < n; ++i) {
d_f_g[i] = dft_d_f[i] * dft_g_2[i];
}
Mul::idft(d_f_g);
d_f_g.resize(2 * n, T(0));
for (int i = 0; i < n - 1; ++i) {
T tmp = T(i + 1) * h.at(i + 1);
d_f_g[n + i] = d_f_g[i] - tmp;
d_f_g[i] = tmp;
}
// \delta D(h_0)
std::vector<T> dft_delta = delta;
Mul::dft(dft_delta);
std::vector<T> delta_d_h(2 * n);
for (int i = 0; i < n - 1; ++i) {
delta_d_h[i] = T(i + 1) * h.at(i + 1);
}
Mul::dft(delta_d_h);
for (int i = 0; i < 2 * n; ++i) {
delta_d_h[i] *= dft_delta[i];
}
Mul::idft(delta_d_h);
std::fill(delta_d_h.begin(), delta_d_h.begin() + n, T(0));
// \epsilon
std::vector<T> eps = std::move(d_f_g);
for (int i = 0; i < 2 * n; ++i) {
eps[i] -= T(i + 1) * h.at(i + 1) + delta_d_h[i];
}
for (int i = 2 * n - 1; i > 0; --i) {
eps[i] = eps[i - 1] / T(i);
}
eps[0] = T(0);
// \epsilon f_0
std::vector<T> dft_eps = eps;
Mul::dft(dft_eps);
std::vector<T> eps_f(2 * n);
for (int i = 0; i < 2 * n; ++i) {
eps_f[i] = dft_eps[i] * dft_f_[i];
}
Mul::idft(eps_f);
std::fill(eps_f.begin(), eps_f.begin() + n - 1, T(0));
// update f
f.resize(2 * n, T(0));
for (int i = 0; i < 2 * n; ++i) {
f[i] -= eps_f[i];
}
if ((int) f.size() >= sz) {
break;
}
// update F_{2n}(f)
dft_f_ = f;
dft_f_.resize(4 * n);
Mul::dft(dft_f_);
// update g
std::vector<T> fg(dft_f_.begin(), dft_f_.begin() + 2 * n);
for (int i = 0; i < 2 * n; ++i) {
fg[i] *= dft_g_2[i];
}
Mul::idft(fg);
std::fill(fg.begin(), fg.begin() + n, T(0));
Mul::dft(fg);
for (int i = 0; i < 2 * n; ++i) {
fg[i] *= dft_g_2[i];
}
Mul::idft(fg);
g.resize(2 * n);
for (int i = n; i < 2 * n; ++i) {
g[i] = -fg[i];
}
}
f.resize(sz);
return Polynomial<T, Mul>(f);
}
// ===== fps_exp.hpp =====
constexpr u32 MOD = 998244353;
using Mint = ModInt<MOD>;
using FPS = Polynomial<Mint, NTTMul<MOD>>;
int main() {
i32 n;
cin >> n;
Vec<i32> a(n);
REP(i, n) {
cin >> a[i];
}
Vec<i32> b(n);
REP(i, n) {
b[i] = 10000 - a[i];
}
constexpr i32 TGT = 369371;
Vec<Mint> cnt(TGT + 1);
REP(i, n) {
cnt[b[i]] += Mint(1);
}
FPS plog(TGT + 1);
REP(i, 1, TGT + 1) {
if (cnt[i] == Mint()) {
continue;
}
//cerr << i << ' ' << cnt[i] << '\n';
for (i32 j = 1; i * j <= TGT; ++j) {
if (j % 2 == 1) {
plog[i * j] += cnt[i] / Mint(j);
} else {
plog[i * j] -= cnt[i] / Mint(j);
}
}
}
Mint p = Mint(2).pow(cnt[0].get_val());
REP(i, TGT + 1) {
plog[i] *= p;
}
FPS pexp = fps_exp(plog);
REP(i, TGT + 1) {
if (pexp[i] != Mint()) {
cerr << i << ' ' << pexp[i] << '\n';
}
}
Mint sum;
REP(i, TGT + 1) {
if (10000 * n - i >= 999630629) {
sum += pexp[i];
}
}
cerr << sum << '\n';
Mint ans;
REP(i, n) {
ans += Mint(a[i]) * Mint(2).pow(n - 1);
}
ans -= Mint(999630629) * sum;
cout << ans << '\n';
}
Forested