結果
問題 | No.2062 Sum of Subset mod 999630629 |
ユーザー |
![]() |
提出日時 | 2022-08-27 00:21:20 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 11,494 bytes |
コンパイル時間 | 6,015 ms |
コンパイル使用メモリ | 278,168 KB |
最終ジャッジ日時 | 2025-01-31 06:01:50 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 24 TLE * 5 |
ソースコード
#include<bits/stdc++.h>#include<atcoder/all>using namespace std;using namespace atcoder;istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }template<int m> istream &operator>>(istream &is, static_modint<m> &a) { long long v; is >> v; a = v; return is; }template<int m> istream &operator>>(istream &is, dynamic_modint<m> &a) { long long v; is >> v; a = v; return is; }template<int m> ostream &operator<<(ostream &os, const static_modint<m> &a) { return os << a.val(); }template<int m> ostream &operator<<(ostream &os, const dynamic_modint<m> &a) { return os << a.val(); }#define rep2(i, m, n) for (int i = (m); i < (n); ++i)#define rep(i, n) rep2(i, 0, n)#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)#define drep(i, n) drep2(i, n, 0)using ll = long long;template<class T> istream &operator>>(istream &is, vector<T> &v) { for (auto &e : v) is >> e; return is; }template<class T> ostream &operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;// verified by:// https://judge.yosupo.jp/problem/convolution_mod// https://judge.yosupo.jp/problem/inv_of_formal_power_series// https://judge.yosupo.jp/problem/log_of_formal_power_series// https://judge.yosupo.jp/problem/exp_of_formal_power_series// https://judge.yosupo.jp/problem/pow_of_formal_power_seriestemplate<class T>struct FormalPowerSeries : vector<T> {using vector<T>::vector;using vector<T>::operator=;using F = FormalPowerSeries;F operator-() const {F res(*this);for (auto &e : res) e = -e;return res;}F &operator*=(const T &g) {for (auto &e : *this) e *= g;return *this;}F &operator/=(const T &g) {assert(g != T(0));*this *= g.inv();return *this;}F &operator+=(const F &g) {int n = this->size(), m = g.size();rep(i, min(n, m)) (*this)[i] += g[i];return *this;}F &operator-=(const F &g) {int n = this->size(), m = g.size();rep(i, min(n, m)) (*this)[i] -= g[i];return *this;}F &operator<<=(const int d) {int n = this->size();this->insert(this->begin(), d, 0);this->resize(n);return *this;}F &operator>>=(const int d) {int n = this->size();this->erase(this->begin(), this->begin() + min(n, d));this->resize(n);return *this;}// O(n log n)F inv(int d = -1) const {int n = this->size();assert(n != 0 && (*this)[0] != 0);if (d == -1) d = n;assert(d >= 0);F res{(*this)[0].inv()};for (int m = 1; m < d; m *= 2) {F f(this->begin(), this->begin() + min(n, 2*m));F g(res);f.resize(2*m), internal::butterfly(f);g.resize(2*m), internal::butterfly(g);rep(i, 2*m) f[i] *= g[i];internal::butterfly_inv(f);f.erase(f.begin(), f.begin() + m);f.resize(2*m), internal::butterfly(f);rep(i, 2*m) f[i] *= g[i];internal::butterfly_inv(f);T iz = T(2*m).inv(); iz *= -iz;rep(i, m) f[i] *= iz;res.insert(res.end(), f.begin(), f.begin() + m);}res.resize(d);return res;}// fast: FMT-friendly modulus only// O(n log n)F &multiply_inplace(const F &g, int d = -1) {int n = this->size();if (d == -1) d = n;assert(d >= 0);*this = convolution(move(*this), g);this->resize(d);return *this;}F multiply(const F &g, const int d = -1) const { return F(*this).multiply_inplace(g, d); }// O(n log n)F ÷_inplace(const F &g, int d = -1) {int n = this->size();if (d == -1) d = n;assert(d >= 0);*this = convolution(move(*this), g.inv(d));this->resize(d);return *this;}F divide(const F &g, const int d = -1) const { return F(*this).divide_inplace(g, d); }// // naive// // O(n^2)// F &multiply_inplace(const F &g) {// int n = this->size(), m = g.size();// drep(i, n) {// (*this)[i] *= g[0];// rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];// }// return *this;// }// F multiply(const F &g) const { return F(*this).multiply_inplace(g); }// // O(n^2)// F ÷_inplace(const F &g) {// assert(g[0] != T(0));// T ig0 = g[0].inv();// int n = this->size(), m = g.size();// rep(i, n) {// rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];// (*this)[i] *= ig0;// }// return *this;// }// F divide(const F &g) const { return F(*this).divide_inplace(g); }// sparse// O(nk)F &multiply_inplace(vector<pair<int, T>> g) {int n = this->size();auto [d, c] = g.front();if (d == 0) g.erase(g.begin());else c = 0;drep(i, n) {(*this)[i] *= c;for (auto &[j, b] : g) {if (j > i) break;(*this)[i] += (*this)[i-j] * b;}}return *this;}F multiply(const vector<pair<int, T>> &g) const { return F(*this).multiply_inplace(g); }// O(nk)F ÷_inplace(vector<pair<int, T>> g) {int n = this->size();auto [d, c] = g.front();assert(d == 0 && c != T(0));T ic = c.inv();g.erase(g.begin());rep(i, n) {for (auto &[j, b] : g) {if (j > i) break;(*this)[i] -= (*this)[i-j] * b;}(*this)[i] *= ic;}return *this;}F divide(const vector<pair<int, T>> &g) const { return F(*this).divide_inplace(g); }// multiply and divide (1 + cz^d)// O(n)void multiply_inplace(const int d, const T c) {int n = this->size();if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i];else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i];else drep(i, n-d) (*this)[i+d] += (*this)[i] * c;}// O(n)void divide_inplace(const int d, const T c) {int n = this->size();if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i];else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i];else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;}// O(n)T eval(const T &a) const {T x(1), res(0);for (auto e : *this) res += e * x, x *= a;return res;}// O(n)F &integ_inplace() {int n = this->size();assert(n > 0);if (n == 1) return *this = F{0};this->insert(this->begin(), 0);this->pop_back();vector<T> inv(n);inv[1] = 1;int p = T::mod();rep2(i, 2, n) inv[i] = - inv[p%i] * (p/i);rep2(i, 2, n) (*this)[i] *= inv[i];return *this;}F integ() const { return F(*this).integ_inplace(); }// O(n)F &deriv_inplace() {int n = this->size();assert(n > 0);rep2(i, 2, n) (*this)[i] *= i;this->erase(this->begin());this->push_back(0);return *this;}F deriv() const { return F(*this).deriv_inplace(); }// O(n log n)F log(int d = -1) const {int n = this->size();assert(n > 0 && (*this)[0] == 1);if (d == -1) d = n;assert(d > 0);F res(this->deriv());res.divide_inplace(*this, d);res.integ_inplace();return res;}// O(n log n)// https://arxiv.org/abs/1301.5804 (Figure 2, right)F &exp_inplace(int d = -1) {int n = this->size();assert(n > 0 && (*this)[0] == 0);if (d == -1) d = n;assert(d >= 0);F g{1}, g_fft;this->resize(d);(*this)[0] = 1;F h_drv(this->deriv());for (int m = 1; m < d; m *= 2) {// prepareF f_fft(this->begin(), this->begin() + m);f_fft.resize(2*m), internal::butterfly(f_fft);// Step 2.a'if (m > 1) {F _f(m);rep(i, m) _f[i] = f_fft[i] * g_fft[i];internal::butterfly_inv(_f);_f.erase(_f.begin(), _f.begin() + m/2);_f.resize(m), internal::butterfly(_f);rep(i, m) _f[i] *= g_fft[i];internal::butterfly_inv(_f);_f.resize(m/2);_f /= T(-m) * m;g.insert(g.end(), _f.begin(), _f.begin() + m/2);}// Step 2.b'--d'F t(this->begin(), this->begin() + m);t.deriv_inplace();{// Step 2.b'F r{h_drv.begin(), h_drv.begin() + m-1};// Step 2.c'r.resize(m); internal::butterfly(r);rep(i, m) r[i] *= f_fft[i];internal::butterfly_inv(r);r /= -m;// Step 2.d't += r;t.insert(t.begin(), t.back()); t.pop_back();}// Step 2.e't.resize(2*m); internal::butterfly(t);g_fft = g; g_fft.resize(2*m); internal::butterfly(g_fft);rep(i, 2*m) t[i] *= g_fft[i];internal::butterfly_inv(t);t.resize(m);t /= 2*m;// Step 2.f'F v(this->begin() + m, this->begin() + min(d, 2*m)); v.resize(m);t.insert(t.begin(), m-1, 0); t.push_back(0);t.integ_inplace();rep(i, m) v[i] -= t[m+i];// Step 2.g'v.resize(2*m); internal::butterfly(v);rep(i, 2*m) v[i] *= f_fft[i];internal::butterfly_inv(v);v.resize(m);v /= 2*m;// Step 2.h'rep(i, min(d-m, m)) (*this)[m+i] = v[i];}return *this;}F exp(const int d = -1) const { return F(*this).exp_inplace(d); }// O(n log n)F &pow_inplace(ll k, int d = -1) {int n = this->size();if (d == -1) d = n;assert(d >= 0);int l = 0;while ((*this)[l] == 0) ++l;if (l > d/k) return *this = F(d);T ic = (*this)[l].inv();T pc = (*this)[l].pow(k);this->erase(this->begin(), this->begin() + l);*this *= ic;*this = this->log();*this *= k;this->exp_inplace();*this *= pc;this->insert(this->begin(), l*k, 0);this->resize(d);return *this;}F pow(const ll k, const int d = -1) const { return F(*this).pow_inplace(k, d); }F operator*(const T &g) const { return F(*this) *= g; }F operator/(const T &g) const { return F(*this) /= g; }F operator+(const F &g) const { return F(*this) += g; }F operator-(const F &g) const { return F(*this) -= g; }F operator<<(const int d) const { return F(*this) <<= d; }F operator>>(const int d) const { return F(*this) >>= d; }F operator*(const F &g) const { return F(*this) *= g; }F operator/(const F &g) const { return F(*this) /= g; }F operator*(const vector<pair<int, T>> &g) const { return F(*this) *= g; }F operator/(const vector<pair<int, T>> &g) const { return F(*this) /= g; }};typedef modint998244353 mint;typedef FormalPowerSeries<mint> fps;//--------typedef long long ll;int main(){// sum(A[i])はかなり小さいので, デカイやつは一周まわるので除外しまくる.int N;cin >> N;vector<int> A(N);mint ans = 0;mint nnv = mint(2).pow(N-1);vector<int> Q(10001);int asum = 0;for (int i=0; i<N; i++){cin >> A[i];ans += nnv * A[i];Q[A[i]] += 1;asum += A[i];}if (asum >= 999630629){int l = asum - 999630629 + 1;fps F(l);F[0] = 1;for (int i=0; i<min(l, 10001); i++){if (Q[i] > 0){fps G(l);G[0] = 1;G[i] = 1;F.multiply_inplace((G.log()*Q[i]).exp());}}mint jogai = 0;for (int i=0; i<l; i++){jogai += F[i];}ans -= jogai * mint(999630629);}cout << ans.val() << endl;}