結果
問題 | No.2062 Sum of Subset mod 999630629 |
ユーザー | shobonvip |
提出日時 | 2022-08-27 00:21:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 11,494 bytes |
コンパイル時間 | 5,344 ms |
コンパイル使用メモリ | 288,072 KB |
実行使用メモリ | 33,616 KB |
最終ジャッジ日時 | 2024-10-14 01:12:34 |
合計ジャッジ時間 | 45,357 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
23,892 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 10 ms
5,248 KB |
testcase_09 | AC | 9 ms
5,248 KB |
testcase_10 | AC | 8 ms
5,248 KB |
testcase_11 | AC | 632 ms
10,812 KB |
testcase_12 | AC | 635 ms
11,196 KB |
testcase_13 | AC | 309 ms
7,484 KB |
testcase_14 | AC | 652 ms
11,060 KB |
testcase_15 | AC | 22 ms
5,248 KB |
testcase_16 | AC | 732 ms
10,756 KB |
testcase_17 | AC | 641 ms
10,680 KB |
testcase_18 | AC | 314 ms
7,724 KB |
testcase_19 | AC | 166 ms
5,248 KB |
testcase_20 | AC | 357 ms
5,624 KB |
testcase_21 | AC | 449 ms
7,280 KB |
testcase_22 | AC | 292 ms
5,596 KB |
testcase_23 | AC | 8 ms
5,248 KB |
testcase_24 | AC | 8 ms
5,248 KB |
testcase_25 | AC | 4,968 ms
33,492 KB |
testcase_26 | AC | 4,987 ms
33,520 KB |
testcase_27 | AC | 4,992 ms
33,616 KB |
testcase_28 | AC | 4,992 ms
33,488 KB |
testcase_29 | AC | 4,106 ms
33,364 KB |
testcase_30 | AC | 3,297 ms
18,656 KB |
testcase_31 | TLE | - |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } template<int m> istream &operator>>(istream &is, static_modint<m> &a) { long long v; is >> v; a = v; return is; } template<int m> istream &operator>>(istream &is, dynamic_modint<m> &a) { long long v; is >> v; a = v; return is; } template<int m> ostream &operator<<(ostream &os, const static_modint<m> &a) { return os << a.val(); } template<int m> ostream &operator<<(ostream &os, const dynamic_modint<m> &a) { return os << a.val(); } #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) using ll = long long; template<class T> istream &operator>>(istream &is, vector<T> &v) { for (auto &e : v) is >> e; return is; } template<class T> ostream &operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; } struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; // verified by: // https://judge.yosupo.jp/problem/convolution_mod // https://judge.yosupo.jp/problem/inv_of_formal_power_series // https://judge.yosupo.jp/problem/log_of_formal_power_series // https://judge.yosupo.jp/problem/exp_of_formal_power_series // https://judge.yosupo.jp/problem/pow_of_formal_power_series template<class T> struct FormalPowerSeries : vector<T> { using vector<T>::vector; using vector<T>::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = this->size(), m = g.size(); rep(i, min(n, m)) (*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = this->size(), m = g.size(); rep(i, min(n, m)) (*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = this->size(); this->insert(this->begin(), d, 0); this->resize(n); return *this; } F &operator>>=(const int d) { int n = this->size(); this->erase(this->begin(), this->begin() + min(n, d)); this->resize(n); return *this; } // O(n log n) F inv(int d = -1) const { int n = this->size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d >= 0); F res{(*this)[0].inv()}; for (int m = 1; m < d; m *= 2) { F f(this->begin(), this->begin() + min(n, 2*m)); F g(res); f.resize(2*m), internal::butterfly(f); g.resize(2*m), internal::butterfly(g); rep(i, 2*m) f[i] *= g[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2*m), internal::butterfly(f); rep(i, 2*m) f[i] *= g[i]; internal::butterfly_inv(f); T iz = T(2*m).inv(); iz *= -iz; rep(i, m) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(d); return res; } // fast: FMT-friendly modulus only // O(n log n) F &multiply_inplace(const F &g, int d = -1) { int n = this->size(); if (d == -1) d = n; assert(d >= 0); *this = convolution(move(*this), g); this->resize(d); return *this; } F multiply(const F &g, const int d = -1) const { return F(*this).multiply_inplace(g, d); } // O(n log n) F ÷_inplace(const F &g, int d = -1) { int n = this->size(); if (d == -1) d = n; assert(d >= 0); *this = convolution(move(*this), g.inv(d)); this->resize(d); return *this; } F divide(const F &g, const int d = -1) const { return F(*this).divide_inplace(g, d); } // // naive // // O(n^2) // F &multiply_inplace(const F &g) { // int n = this->size(), m = g.size(); // drep(i, n) { // (*this)[i] *= g[0]; // rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j]; // } // return *this; // } // F multiply(const F &g) const { return F(*this).multiply_inplace(g); } // // O(n^2) // F ÷_inplace(const F &g) { // assert(g[0] != T(0)); // T ig0 = g[0].inv(); // int n = this->size(), m = g.size(); // rep(i, n) { // rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j]; // (*this)[i] *= ig0; // } // return *this; // } // F divide(const F &g) const { return F(*this).divide_inplace(g); } // sparse // O(nk) F &multiply_inplace(vector<pair<int, T>> g) { int n = this->size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } F multiply(const vector<pair<int, T>> &g) const { return F(*this).multiply_inplace(g); } // O(nk) F ÷_inplace(vector<pair<int, T>> g) { int n = this->size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep(i, n) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } F divide(const vector<pair<int, T>> &g) const { return F(*this).divide_inplace(g); } // multiply and divide (1 + cz^d) // O(n) void multiply_inplace(const int d, const T c) { int n = this->size(); if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i]; else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i]; else drep(i, n-d) (*this)[i+d] += (*this)[i] * c; } // O(n) void divide_inplace(const int d, const T c) { int n = this->size(); if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i]; else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i]; else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c; } // O(n) T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } // O(n) F &integ_inplace() { int n = this->size(); assert(n > 0); if (n == 1) return *this = F{0}; this->insert(this->begin(), 0); this->pop_back(); vector<T> inv(n); inv[1] = 1; int p = T::mod(); rep2(i, 2, n) inv[i] = - inv[p%i] * (p/i); rep2(i, 2, n) (*this)[i] *= inv[i]; return *this; } F integ() const { return F(*this).integ_inplace(); } // O(n) F &deriv_inplace() { int n = this->size(); assert(n > 0); rep2(i, 2, n) (*this)[i] *= i; this->erase(this->begin()); this->push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } // O(n log n) F log(int d = -1) const { int n = this->size(); assert(n > 0 && (*this)[0] == 1); if (d == -1) d = n; assert(d > 0); F res(this->deriv()); res.divide_inplace(*this, d); res.integ_inplace(); return res; } // O(n log n) // https://arxiv.org/abs/1301.5804 (Figure 2, right) F &exp_inplace(int d = -1) { int n = this->size(); assert(n > 0 && (*this)[0] == 0); if (d == -1) d = n; assert(d >= 0); F g{1}, g_fft; this->resize(d); (*this)[0] = 1; F h_drv(this->deriv()); for (int m = 1; m < d; m *= 2) { // prepare F f_fft(this->begin(), this->begin() + m); f_fft.resize(2*m), internal::butterfly(f_fft); // Step 2.a' if (m > 1) { F _f(m); rep(i, m) _f[i] = f_fft[i] * g_fft[i]; internal::butterfly_inv(_f); _f.erase(_f.begin(), _f.begin() + m/2); _f.resize(m), internal::butterfly(_f); rep(i, m) _f[i] *= g_fft[i]; internal::butterfly_inv(_f); _f.resize(m/2); _f /= T(-m) * m; g.insert(g.end(), _f.begin(), _f.begin() + m/2); } // Step 2.b'--d' F t(this->begin(), this->begin() + m); t.deriv_inplace(); { // Step 2.b' F r{h_drv.begin(), h_drv.begin() + m-1}; // Step 2.c' r.resize(m); internal::butterfly(r); rep(i, m) r[i] *= f_fft[i]; internal::butterfly_inv(r); r /= -m; // Step 2.d' t += r; t.insert(t.begin(), t.back()); t.pop_back(); } // Step 2.e' t.resize(2*m); internal::butterfly(t); g_fft = g; g_fft.resize(2*m); internal::butterfly(g_fft); rep(i, 2*m) t[i] *= g_fft[i]; internal::butterfly_inv(t); t.resize(m); t /= 2*m; // Step 2.f' F v(this->begin() + m, this->begin() + min(d, 2*m)); v.resize(m); t.insert(t.begin(), m-1, 0); t.push_back(0); t.integ_inplace(); rep(i, m) v[i] -= t[m+i]; // Step 2.g' v.resize(2*m); internal::butterfly(v); rep(i, 2*m) v[i] *= f_fft[i]; internal::butterfly_inv(v); v.resize(m); v /= 2*m; // Step 2.h' rep(i, min(d-m, m)) (*this)[m+i] = v[i]; } return *this; } F exp(const int d = -1) const { return F(*this).exp_inplace(d); } // O(n log n) F &pow_inplace(ll k, int d = -1) { int n = this->size(); if (d == -1) d = n; assert(d >= 0); int l = 0; while ((*this)[l] == 0) ++l; if (l > d/k) return *this = F(d); T ic = (*this)[l].inv(); T pc = (*this)[l].pow(k); this->erase(this->begin(), this->begin() + l); *this *= ic; *this = this->log(); *this *= k; this->exp_inplace(); *this *= pc; this->insert(this->begin(), l*k, 0); this->resize(d); return *this; } F pow(const ll k, const int d = -1) const { return F(*this).pow_inplace(k, d); } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(const vector<pair<int, T>> &g) const { return F(*this) *= g; } F operator/(const vector<pair<int, T>> &g) const { return F(*this) /= g; } }; typedef modint998244353 mint; typedef FormalPowerSeries<mint> fps; //-------- typedef long long ll; int main(){ // sum(A[i])はかなり小さいので, デカイやつは一周まわるので除外しまくる. int N; cin >> N; vector<int> A(N); mint ans = 0; mint nnv = mint(2).pow(N-1); vector<int> Q(10001); int asum = 0; for (int i=0; i<N; i++){ cin >> A[i]; ans += nnv * A[i]; Q[A[i]] += 1; asum += A[i]; } if (asum >= 999630629){ int l = asum - 999630629 + 1; fps F(l); F[0] = 1; for (int i=0; i<min(l, 10001); i++){ if (Q[i] > 0){ fps G(l); G[0] = 1; G[i] = 1; F.multiply_inplace((G.log()*Q[i]).exp()); } } mint jogai = 0; for (int i=0; i<l; i++){ jogai += F[i]; } ans -= jogai * mint(999630629); } cout << ans.val() << endl; }