結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
👑 |
| 提出日時 | 2022-08-27 17:51:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 29 ms / 9,973 ms |
| コード長 | 5,962 bytes |
| コンパイル時間 | 1,269 ms |
| コンパイル使用メモリ | 153,328 KB |
| 最終ジャッジ日時 | 2025-01-31 06:27:52 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
コンパイルメッセージ
main.cpp: In function ‘int main(int, char**)’:
main.cpp:154:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
154 | scanf("%d", &n);
| ~~~~~^~~~~~~~~~
main.cpp:157:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
157 | scanf("%ld", &x);
| ~~~~~^~~~~~~~~~~
ソースコード
#ifndef NDEBUG
#define NDEBUG
#endif
#include <cassert>
#include <cstdint>
#include <cstdio>
#include <ctime>
#ifdef _MSC_VER
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
class U64Mont {
public:
const uint64_t n; // == n
const uint64_t ni; // n * ni == 1 (mod 2**64)
const uint64_t n1; // == n - 1
const uint64_t nh; // == (n + 1) / 2
const uint64_t r; // == 2**64 (mod n)
const uint64_t n1r; // == -(2**64) (mod n)
const uint64_t r2; // == 2**128 (mod n)
const uint64_t d; // == n1 >> k // n == 2**k * d + 1
const std::uint32_t k; // == trailing_zeros(n1)
U64Mont(uint64_t n, uint64_t ni, uint64_t n1, uint64_t nh, uint64_t r, uint64_t n1r, uint64_t r2, uint64_t d, std::uint32_t k)
: n(n), ni(ni), n1(n1), nh(nh), r(r), n1r(n1r), r2(r2), d(d), k(k) {}
static U64Mont build(uint64_t n) {
assert(n & 1 == 1);
// // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
// ni0 := n; // = 2*k+1 = (1+(2**2)*((k*(k+1))**1))/(2*k+1)
uint64_t ni = n;
// ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**4)*((k*(k+1))**2))/(2*k+1)
// ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**8)*((k*(k+1))**4))/(2*k+1)
// ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**16)*((k*(k+1))**8))/(2*k+1)
// ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**32)*((k*(k+1))**16))/(2*k+1)
// ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**64)*((k*(k+1))**32))/(2*k+1)
// // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64
for (int i = 0; i < 5; ++i) {
ni = ni * (2 - n * ni);
}
assert(n * ni == 1); // n * ni == 1 (mod 2**64)
uint64_t n1 = n - 1; // == n - 1
uint64_t nh = (n >> 1) + 1; // == (n + 1) / 2
uint64_t r = (-n) % n; // == 2**64 (mod n)
uint64_t n1r = n - r; // == -(2**64) (mod n)
uint64_t r2 = (uint64_t)((-((__uint128_t)n)) % ((__uint128_t)n)); // == 2**128 (mod n)
// n == 2**k * d + 1
std::uint32_t k = __builtin_ctzll(n1);
uint64_t d = n1 >> k;
U64Mont tobj(n, ni, n1, nh, r, n1r, r2, d, k);
return tobj;
}
uint64_t add(uint64_t a, uint64_t b) {
// add(a, b) == a + b (mod n)
assert(a < n);
assert(b < n);
unsigned long long t, u;
unsigned char f1 = _addcarry_u64(0, a, b, &t);
unsigned char f2 = _subborrow_u64(0, t, f1 ? n : 0, &u);
return f2 ? t : u;
}
uint64_t sub(uint64_t a, uint64_t b) {
// sub(a, b) == a - b (mod n)
assert(a < n);
assert(b < n);
unsigned long long t;
unsigned char f = _subborrow_u64(0, a, b, &t);
return t + (f ? n : 0);
}
uint64_t div2(uint64_t ar) {
// div2(ar) == ar / 2 (mod n)
assert(ar < n);
if ((ar & 1) == 0) {
return (ar >> 1);
} else {
return (ar >> 1) + nh;
}
}
uint64_t mrmul(uint64_t ar, uint64_t br) {
// mrmul(ar, br) == (ar * br) / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// 0 <= br < N < R
// T := ar * br
// t := floor(T / R) - floor(((T * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
assert(ar < n);
assert(br < n);
__uint128_t t = ((__uint128_t)ar) * ((__uint128_t)br);
uint64_t u = (uint64_t)(t >> 64);
uint64_t v = (uint64_t)((((__uint128_t)(((uint64_t)t) * ni)) * ((__uint128_t)n)) >> 64);
unsigned long long w;
unsigned char f = _subborrow_u64(0, u, v, &w);
return w + (f ? n : 0);
}
uint64_t mr(uint64_t ar) {
// mr(ar) == ar / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// t := floor(ar / R) - floor(((ar * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
assert(ar < p_this->n);
uint64_t v = (uint64_t)((((__uint128_t)(ar * ni)) * ((__uint128_t)n)) >> 64);
return v == 0 ? 0 : n - v;
}
uint64_t ar(uint64_t ar) {
// ar(a) == a * r (mod n)
assert(ar < n);
return mrmul(ar, r2);
}
uint64_t pow(uint64_t ar, uint64_t b) {
// pow(ar, b) == ((ar / r) ** b) * r (mod n)
assert(ar < n);
uint64_t t = ((b & 1) == 0) ? r : ar;
b >>= 1;
while (b != 0) {
ar = mrmul(ar, ar);
if ((b & 1) != 0) { t = mrmul(t, ar); }
b >>= 1;
}
return t;
}
};
const uint64_t bases[] = {2,325,9375,28178,450775,9780504,1795265022};
int miller_rabin(uint64_t n) {
// Deterministic variants of the Miller-Rabin primality test
// http://miller-rabin.appspot.com/
if (n == 2) { return 1; }
if (n < 2 || (n & 1) == 0) { return 0; }
U64Mont mont = U64Mont::build(n);
for (int i = 0; i < 7; ++i) {
uint64_t a = bases[i];
if (a >= n) { a %= n; }
if (a == 0) { continue; }
uint64_t ar = mont.ar(a);
uint64_t tr = mont.pow(ar, mont.d);
if (tr == mont.r || tr == mont.n1r) { continue; }
for (int j = 1; j < mont.k; ++j) { tr = mont.mrmul(tr, tr); if (tr == mont.n1r) { goto cont; } }
return 0;
cont: continue;
}
return 1;
}
int main(int argc, char *argv[]) {
struct timespec start_time, end_time;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_time);
int n;
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
int64_t x;
scanf("%ld", &x);
printf("%ld %d\n", x, miller_rabin(x));
}
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_time);
int sec = end_time.tv_sec - start_time.tv_sec;
int nsec = end_time.tv_nsec - start_time.tv_nsec;
double d_sec = (double)sec + (double)nsec / (1000 * 1000 * 1000);
fprintf(stderr, "time:%f\n", d_sec);
}