結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
👑 |
| 提出日時 | 2022-08-27 20:32:16 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 28 ms / 9,973 ms |
| コード長 | 8,208 bytes |
| コンパイル時間 | 11,860 ms |
| コンパイル使用メモリ | 377,808 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-16 23:58:57 |
| 合計ジャッジ時間 | 12,742 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
// -*- coding:utf-8-unix -*-
// モンゴメリ剰余乗算 (Montgomery modular multiplication)
pub trait UMontTrait<T> {
fn n(&self) -> T;
fn ni(&self) -> T;
fn nh(&self) -> T;
fn r(&self) -> T;
fn rn(&self) -> T;
fn r2(&self) -> T;
fn d(&self) -> T;
fn k(&self) -> u32;
// create constant structures for montgomery modular arithmetic
fn new(n: T) -> Self;
// addmod(a, b) == a + b (mod n)
fn add(&self, a: T, b: T) -> T;
// submod(a, b) == a - b (mod n)
fn sub(&self, a: T, b: T) -> T;
// div2mod(ar) == ar / 2 (mod n)
fn div2(&self, ar: T) -> T;
// mrmul(ar, br) == (ar * br) / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// 0 <= br < N < R
// T := ar * br
// t := floor(T / R) - floor(((T * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
fn mrmul(&self, ar: T, br: T) -> T;
// mr(ar) == ar / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// t := floor(ar / R) - floor(((ar * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
fn mr(&self, ar: T) -> T;
// ar(a) == a * r (mod n)
fn ar(&self, a: T) -> T;
// powir(ar, b) == ((ar / r) ** b) * r (mod n)
fn pow(&self, ar: T, b: T) -> T;
// Miller-Rabin primality test
fn prime_test_once(&self, base: T) -> bool;
}
pub struct U64Mont {
n: u64, // n is odd, and n > 2
ni: u64, // n * ni == 1 (mod 2**64)
nh: u64, // == (n + 1) / 2
r: u64, // == 2**64 (mod n)
rn: u64, // == -(2**64) (mod n)
r2: u64, // == 2**128 (mod n)
d: u64, // == (n - 1) >> (n - 1).trailing_zeros()
k: u32, // == (n - 1).trailing_zeros()
}
impl UMontTrait<u64> for U64Mont {
#[inline] fn n(&self) -> u64 { self.n }
#[inline] fn ni(&self) -> u64 { self.ni }
#[inline] fn nh(&self) -> u64 { self.nh }
#[inline] fn r(&self) -> u64 { self.r }
#[inline] fn rn(&self) -> u64 { self.rn }
#[inline] fn r2(&self) -> u64 { self.r2 }
#[inline] fn d(&self) -> u64 { self.d }
#[inline] fn k(&self) -> u32 { self.k }
#[inline]
fn new(n: u64) -> Self {
// create constant structures for montgomery modular arithmetic
debug_assert_eq!(n & 1, 1);
// // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
// ni0 := n; // = 2*k+1 = (1+(2**2)*((k*(k+1))**1))/(2*k+1)
let mut ni = n;
// ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**4)*((k*(k+1))**2))/(2*k+1)
// ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**8)*((k*(k+1))**4))/(2*k+1)
// ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**16)*((k*(k+1))**8))/(2*k+1)
// ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**32)*((k*(k+1))**16))/(2*k+1)
// ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**64)*((k*(k+1))**32))/(2*k+1)
// // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64
for _ in 0..5 {
ni = ni.wrapping_mul(2u64.wrapping_sub(n.wrapping_mul(ni)));
}
debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64)
let nh = (n >> 1) + 1; // == (n + 1) / 2
let r: u64 = n.wrapping_neg() % n; // == 2**64 (mod n)
let rn: u64 = n - r; // == -(2**64) (mod n)
let r2: u64 = ((n as u128).wrapping_neg() % (n as u128)) as u64; // == 2**128 (mod n)
// n == 2**k * d + 1
let mut d = n - 1;
let k = d.trailing_zeros();
d >>= k;
debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mr(r), 1); // r / r == 1 (mod n)
debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n)
Self { n, ni, nh, r, rn, r2, d, k }
}
#[inline]
fn add(&self, a: u64, b: u64) -> u64 {
// addmod(a, b) == a + b (mod n)
debug_assert!(a < self.n());
debug_assert!(b < self.n());
let (t, fa) = a.overflowing_add(b);
let (u, fs) = t.overflowing_sub(self.n());
if fa || !fs { u } else { t }
}
#[inline]
fn sub(&self, a: u64, b: u64) -> u64 {
// submod(a, b) == a - b (mod n)
debug_assert!(a < self.n());
debug_assert!(b < self.n());
let (t, f) = a.overflowing_sub(b);
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn div2(&self, ar: u64) -> u64 {
// div2mod(ar) == ar / 2 (mod n)
debug_assert!(ar < self.n());
if (ar & 1) == 0 {
ar >> 1
} else {
(ar >> 1) + self.nh()
}
}
#[inline]
fn mrmul(&self, ar: u64, br: u64) -> u64 {
// mrmul(ar, br) == (ar * br) / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// 0 <= br < N < R
// T := ar * br
// t := floor(T / R) - floor(((T * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
debug_assert!(ar < self.n());
debug_assert!(br < self.n());
let t: u128 = (ar as u128) * (br as u128);
let (t, f) = ((t >> 64) as u64).overflowing_sub((((((t as u64).wrapping_mul(self.ni())) as u128) * (self.n() as u128)) >> 64) as u64);
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn mr(&self, ar: u64) -> u64 {
// mr(ar) == ar / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// t := floor(ar / R) - floor(((ar * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
debug_assert!(ar < self.n());
let (t, f) = (((((ar.wrapping_mul(self.ni())) as u128) * (self.n() as u128)) >> 64) as u64).overflowing_neg();
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn ar(&self, a: u64) -> u64 {
// ar(a) == a * r (mod n)
debug_assert!(a < self.n());
self.mrmul(a, self.r2())
}
#[inline]
fn pow(&self, mut ar: u64, mut b: u64) -> u64 {
// powir(ar, b) == ((ar / r) ** b) * r (mod n)
debug_assert!(ar < self.n());
let mut t = if (b & 1) == 0 { self.r() } else { ar };
b >>= 1;
while b != 0 {
ar = self.mrmul(ar, ar);
if (b & 1) != 0 { t = self.mrmul(t, ar); }
b >>= 1;
}
t
}
#[inline]
fn prime_test_once(&self, base: u64) -> bool {
// Miller-Rabin primality test
debug_assert!(base > 1);
let (n, r, d, k) = (self.n(), self.r(), self.d(), self.k());
let b = if base < n { base } else { base % n };
if b == 0 { return true; }
let mut br = self.pow(self.ar(b), d);
if br == r || br == self.rn { return true; }
for _ in 1..k {
br = self.mrmul(br, br);
if br == self.rn { return true; }
}
false
}
}
#[inline]
fn prime_test_miller_7bases(mont: &U64Mont) -> bool {
// Deterministic variants of the Miller-Rabin primality test
// http://miller-rabin.appspot.com/
mont.prime_test_once(2) &&
mont.prime_test_once(325) &&
mont.prime_test_once(9375) &&
mont.prime_test_once(28178) &&
mont.prime_test_once(450775) &&
mont.prime_test_once(9780504) &&
mont.prime_test_once(1795265022)
}
pub fn prime_test_64_miller(n: u64) -> bool {
if n == 2 { return true; }
if n == 1 || (n & 1) == 0 { return false; }
let mont = U64Mont::new(n);
prime_test_miller_7bases(&mont)
}
fn main() {
use std::io::{BufRead,Write};
let start_time = std::time::Instant::now();
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
let input = std::io::stdin();
let mut lines = std::io::BufReader::new(input.lock()).lines();
let n: usize = lines.next().unwrap().unwrap().parse().unwrap();
for _ in 0..n {
let x: u64 = lines.next().unwrap().unwrap().parse().unwrap();
puts!("{} {}\n", x, if prime_test_64_miller(x) { "1" } else { "0" });
}
eprint!("{}us\n", start_time.elapsed().as_micros());
}