結果
問題 | No.621 3 x N グリッド上のドミノの置き方の数 |
ユーザー |
|
提出日時 | 2022-08-28 21:30:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 22 ms / 3,000 ms |
コード長 | 10,131 bytes |
コンパイル時間 | 3,582 ms |
コンパイル使用メモリ | 240,488 KB |
最終ジャッジ日時 | 2025-02-06 23:06:09 |
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 66 |
ソースコード
#include<bits/stdc++.h>using namespace std;#define rep(i,n) for(ll i=0;i<n;i++)#define repl(i,l,r) for(ll i=(l);i<(r);i++)#define per(i,n) for(ll i=(n)-1;i>=0;i--)#define perl(i,r,l) for(ll i=r-1;i>=l;i--)#define fi first#define se second#define pb push_back#define ins insert#define pqueue(x) priority_queue<x,vector<x>,greater<x>>#define all(x) (x).begin(),(x).end()#define CST(x) cout<<fixed<<setprecision(x)#define vtpl(x,y,z) vector<tuple<x,y,z>>#define rev(x) reverse(x);using ll=long long;using vl=vector<ll>;using vvl=vector<vector<ll>>;using pl=pair<ll,ll>;using vpl=vector<pl>;using vvpl=vector<vpl>;const ll MOD=1000000007;const ll MOD9=998244353;const int inf=1e9+10;const ll INF=4e18;const ll dy[9]={0,1,0,-1,1,1,-1,-1,0};const ll dx[9]={1,0,-1,0,1,-1,1,-1,0};template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}const int mod = MOD;const int max_n = 200005;struct mint {ll x; // typedef long long ll;mint(ll x=0):x((x%mod+mod)%mod){}mint operator-() const { return mint(-x);}mint& operator+=(const mint a) {if ((x += a.x) >= mod) x -= mod;return *this;}mint& operator-=(const mint a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}mint operator+(const mint a) const { return mint(*this) += a;}mint operator-(const mint a) const { return mint(*this) -= a;}mint operator*(const mint a) const { return mint(*this) *= a;}mint pow(ll t) const {if (!t) return 1;mint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}bool operator==(const mint &p) const { return x == p.x; }bool operator!=(const mint &p) const { return x != p.x; }// for prime modmint inv() const { return pow(mod-2);}mint& operator/=(const mint a) { return *this *= a.inv();}mint operator/(const mint a) const { return mint(*this) /= a;}};istream& operator>>(istream& is, mint& a) { return is >> a.x;}ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}using vm=vector<mint>;using vvm=vector<vm>;struct combination {vector<mint> fact, ifact;combination(int n):fact(n+1),ifact(n+1) {assert(n < mod);fact[0] = 1;for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;ifact[n] = fact[n].inv();for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;}mint operator()(int n, int k) {if (k < 0 || k > n) return 0;return fact[n]*ifact[k]*ifact[n-k];}}comb(max_n);struct UnionFind {vector<int> par;vector<int> edge;UnionFind(int n) : par(n, -1),edge(n, 0) {}int root(int x) {if (par[x] < 0) return x;else return par[x] = root(par[x]);}bool same(int x, int y) {return root(x) == root(y);}bool merge(int x, int y) {x = root(x); y = root(y);if (x == y) {edge[x]++;return false;}if (par[x] > par[y]) swap(x, y);par[x] += par[y];par[y] = x;edge[x] += edge[y]+1;return true;}int size(int x) {return -par[root(x)];}};vector<mint> BerlekampMassey(const vector<mint> &s) {const int N = (int)s.size();vector<mint> b, c;b.reserve(N + 1);c.reserve(N + 1);b.push_back(mint(1));c.push_back(mint(1));mint y = mint(1);for (int ed = 1; ed <= N; ed++) {int l = int(c.size()), m = int(b.size());mint x = 0;for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];b.emplace_back(mint(0));m++;if (x == mint(0)) continue;mint freq = x / y;if (l < m) {auto tmp = c;c.insert(begin(c), m - l, mint(0));for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];b = tmp;y = x;} else {for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];}}reverse(begin(c), end(c));return c;}template <typename mint>vector<mint> kitamasa(vector<mint> Q,vector<mint> a) {assert(!Q.empty() && Q[0] != 0);assert((int)a.size() >= int(Q.size()) - 1);vector<mint> P(Q.size()*2-2);for(ll i=0;i<Q.size()-1;i++){for(ll j=0;j<Q.size();j++){P[i+j]+=a[i]*Q[j];}}P.resize(Q.size() - 1);return P;}template<class T>struct bostan_mori {vector<T> p, q;bostan_mori(vector<T> &_p, vector<T> &_q) : p(_p), q(_q) {}void rever(vector<T> &f) const {int d = f.size();rep(i, d) if (i&1) f[i] = -f[i];}void even(vector<T> &f) const {int d = (f.size() + 1) >> 1;rep(i, d) f[i] = f[i<<1];f.resize(d);}void odd(vector<T> &f) const {int d = f.size() >> 1;rep(i, d) f[i] = f[i<<1|1];f.resize(d);}vector<T> convolution(vector<T> a,vector<T> b) const{int n=a.size(),m=b.size();vector<T> c(n+m-1);rep(i,n)rep(j,m)c[i+j]+=a[i]*b[j];return c;}T operator[] (ll n) const {vector<T> _p(p), _q(q), _q_rev(q);rever(_q_rev);for (; n; n >>= 1) {_p = convolution(move(_p), _q_rev);if (n&1) odd(_p);else even(_p);_q = convolution(move(_q), move(_q_rev));even(_q);_q_rev = _q; rever(_q_rev);}return _p[0] / _q[0];}};//https://nyaannyaan.github.io/library/fps/kitamasa.hpp//https://atcoder.jp/contests/tdpc/submissions/34362182//線形漸化式のprefixからn項目を復元できる。bostan_mori<mint> interpolation(vm a){auto q=BerlekampMassey(a);auto p=kitamasa(q,a);return bostan_mori<mint>(p,q);}mint solve(ll n){map<vl,mint> dp;dp[{2,2,2}]=1;rep(_,n){map<vl,mint> ndp;for(auto [v,val]:dp){set<vl> st;st.insert(vl({-1,-1,-1}));{set<vl> nst=st;for(auto p:st){if(p[0]==-1&&p[1]==-1&&v[0]!=0&&v[1]!=0){p[0]=2;p[1]=2;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(p[1]==-1&&p[2]==-1&&v[1]!=0&&v[2]!=0){p[1]=2;p[2]=2;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[0]==0&&p[0]==-1){p[0]=2;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[1]==0&&p[1]==-1){p[1]=2;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[2]==0&&p[2]==-1){p[2]=2;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[0]!=0&&p[0]==-1){p[0]=0;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[1]!=0&&p[1]==-1){p[1]=0;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[2]!=0&&p[2]==-1){p[2]=0;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[0]!=0&&p[0]==-1&&v[0]!=1&&p[1]!=1){p[0]=1;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[1]!=0&&p[1]==-1&&v[1]!=1&&p[0]!=1&&p[2]!=1){p[1]=1;nst.insert(p);}}swap(st,nst);}{set<vl> nst=st;for(auto p:st){if(v[2]!=0&&p[2]==-1&&v[2]!=1&&p[1]!=1){p[2]=1;nst.insert(p);}}swap(st,nst);}for(auto to:st){bool ok=true;rep(i,3)if(to[i]==-1)ok=false;if(ok)ndp[to]+=val;}}swap(dp,ndp);}mint ans=0;for(auto p:dp){bool ok=true;rep(i,3)if(p.first[i]==0)ok=false;if(ok)ans+=p.second;}return ans;}vm dp={1,2,5,22,75,264,941,3286,11623,40960,144267,508812,1792981,6319994,22277291,78518760,276763545,975517878,438444562,119670782,718700373,572582090,730060385,688016070,699386708,110529611,995262545,597995343,640606626,241830833,272804340,283380443,545790282,699375508,859877759,656285179,175970508,314324844,545142464,835141447,795582614,192966456,219968013,455478810,545912024,375190023,626023603,293536141,560368619,515677853,858117007,300028037,323658700,884276037,615126475,820479119,409463537,519011336,207995574,676075945,573865793,859615676,937178370,254676667,361664011,247757645,807832664,823378986,553804392,846880559,787975932,653917694,636527187,952330033,103503637,561719530,68932534,83040414,231438915,389821013,925377561,942722655,395984742,581085945,336440498,145041049,95458618,909033807,307451509,297905891,519194781,15254485,80527014,867190435,565648478,116363033,22522660,23400456,66368402,85236134,217561183,35604679,960146403,31549076,894013996,13564442,791506429,932281824,471367224,76874437,675671298,561189725,270253654,685195151,303935889,277050023,619882550,658318681,876159999,982371168,710953743,103955127,175947231,87173702,606258895,533286899,275053460,56133425,985751894,54859081,260694339,445176464,471996759,832484215,127132888,790868694,903376452,791292432,873258058,402781172,933259293,732236683,651088116,469228293,258009983,917049638,564753087,187008063,591180573,382553735,737338319,570739188,726174728,305294669,359583017};int main(){/*rep(i,200){cout << solve(i) <<","<< endl;}*/ll n;cin >> n;auto ip=interpolation(dp);cout << ip[n] << endl;}