結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | Jashinchan |
提出日時 | 2022-08-29 12:45:24 |
言語 | C (gcc 12.3.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,534 bytes |
コンパイル時間 | 308 ms |
コンパイル使用メモリ | 34,944 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-04-24 03:59:14 |
合計ジャッジ時間 | 1,012 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | AC | 17 ms
5,376 KB |
testcase_06 | AC | 9 ms
5,376 KB |
testcase_07 | AC | 9 ms
5,376 KB |
testcase_08 | AC | 9 ms
5,376 KB |
testcase_09 | AC | 28 ms
5,376 KB |
コンパイルメッセージ
main.c: In function 'in': main.c:72:16: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration] 72 | while (c = getchar_unlocked(), c < 48 || c > 57); | ^~~~~~~~~~~~~~~~ main.c: In function 'out': main.c:83:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration] 83 | putchar_unlocked(x - ((((__uint128_t)x * 14757395258967641293ull) >> 3) >> 64) * 10 + 48); | ^~~~~~~~~~~~~~~~
ソースコード
#include <stdint.h> #include <stdio.h> uint64_t gcd64(uint64_t a, uint64_t b) { if (!a || !b) return a | b; uint64_t t; uint64_t sh = __builtin_ctzll(a | b); a >>= __builtin_ctzll(a); do { b >>= __builtin_ctzll(b); if (a > b) t = a, a = b, b = t; b -= a; } while (b); return a << sh; } uint32_t mr32(uint64_t A, uint32_t n, uint32_t ninv) { uint32_t y = (uint32_t)(A >> 32) - (uint32_t)(((uint64_t)((uint32_t)A * ninv) * n) >> 32); return (int32_t)y < 0 ? y + n : y; } uint32_t mul32(uint32_t a, uint32_t b, uint32_t n, uint32_t ninv) { return mr32((uint64_t)a * b, n, ninv); } uint32_t pow32(uint32_t a, uint32_t k, uint32_t n, uint32_t ninv, uint32_t r) { uint32_t ret = r; while (k > 0) { if (k & 1) ret = mul32(ret, a, n, ninv); a = mul32(a, a, n, ninv); k >>= 1; } return ret; } uint64_t mr64(__uint128_t A, uint64_t n, uint64_t ninv) { uint64_t y = (uint64_t)(A >> 64) - (uint64_t)(((__uint128_t)((uint64_t)A * ninv) * n) >> 64); return (int64_t)y < 0 ? y + n : y; } uint64_t mul64(uint64_t a, uint64_t b, uint64_t n, uint64_t ninv) { return mr64((__uint128_t)a * b, n, ninv); } uint64_t pow64(uint64_t a, uint64_t k, uint64_t n, uint64_t ninv, uint64_t r) { uint64_t ret = r; while (k > 0) { if (k & 1) ret = mul64(ret, a, n, ninv); a = mul64(a, a, n, ninv); k >>= 1; } return ret; } uint64_t in(void) { uint64_t c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } void out(uint64_t x) { if (x >= 10) out((((__uint128_t)x * 14757395258967641293ull) >> 3) >> 64); putchar_unlocked(x - ((((__uint128_t)x * 14757395258967641293ull) >> 3) >> 64) * 10 + 48); } int miller_rabin32(uint32_t n) { static uint32_t base[] = { 2u, 7u, 61u }; int s = __builtin_ctz(n - 1); uint32_t d = (n - 1) >> s; uint32_t r = (uint32_t)-1u % n + 1; uint32_t r2 = (uint64_t)(int64_t)-1 % n + 1; uint32_t ninv = n; for (int _ = 0; _ < 4; ++_) ninv *= 2 - ninv * n; for (int i = 0; i < 3; ++i) { if (base[i] >= n) break; uint32_t a = mr32((uint64_t)r2 * base[i], n, ninv); uint32_t c = pow32(a, d, n, ninv, r); if (c == r) continue; int f = 0; for (int q = 0; q < s && f == 0; q++) { f |= (c == (n - r)); c = mul32(c, c, n, ninv); } if (f == 0) return 0; } return 1; } int miller_rabin64(uint64_t n) { static uint64_t base[] = { 325, 9375, 28178, 450775, 9780504, 1795265022 }; int s = __builtin_ctzll(n - 1); uint64_t d = (n - 1) >> s; uint64_t r = (uint64_t)-1ull % n + 1; uint64_t r2 = (__uint128_t)(__int128_t)-1 % n + 1; uint64_t ninv = n; for (int _ = 0; _ < 5; ++_) ninv *= 2 - ninv * n; { uint64_t l = (n - 1) << __builtin_clzll(n - 1); uint64_t t = r << 1; if (t >= n) t -= n; for (l <<= 1; l; l <<= 1) { t = mul64(t, t, n, ninv); if (l >> 63) { t <<= 1; if (t >= n) t -= n; } } if (t != r) { uint64_t x = (n - 1) & -(n - 1); uint64_t rev = n - r; for (x >>= 1; t != rev; x >>= 1) { if (x == 0) return 0; t = mul64(t, t, n, ninv); } } } for (int i = 0; i < 6; ++i) { if (base[i] >= n) break; uint64_t a = mr64((__uint128_t)r2 * base[i], n, ninv); uint64_t c = pow64(a, d, n, ninv, r); if (c == r) continue; int f = 0; for (int q = 0; q < s && f == 0; q++) { f |= (c == (n - r)); c = mul64(c, c, n, ninv); } if (f == 0) return 0; } return 1; } int is_prime(uint64_t n) { if (n < 2ull) return 0; if (n < 4ull) return 1; if (n & 1 == 0) return 0; if (gcd64(n, 15) != 1) return 0; if (n < 4294967296ull) return miller_rabin32(n); else return miller_rabin64(n); } int main(void) { uint64_t Q = in(); while (Q--) { uint64_t x = in(); out(x); putchar_unlocked(' '); out(is_prime(x)); putchar_unlocked('\n'); } return 0; }