結果
| 問題 |
No.1983 [Cherry 4th Tune C] 南の島のマーメイド
|
| コンテスト | |
| ユーザー |
strangerxxx
|
| 提出日時 | 2022-08-30 11:31:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,107 bytes |
| コンパイル時間 | 385 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 364,516 KB |
| 最終ジャッジ日時 | 2024-11-07 06:45:19 |
| 合計ジャッジ時間 | 53,212 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 39 RE * 2 |
ソースコード
def resolve():
n, m, q = map(int, input().split())
edges = [[] for _ in range(n)]
uf = UnionFind(n)
for _ in range(m):
u, v = map(lambda x: int(x) - 1, input().split())
edges[u].append(v)
edges[v].append(u)
uf.union(u, v)
u = UnionFind(n)
for v in uf.all_group_members().values():
d = {j: i for i, j in enumerate(v)}
edge = [[] for _ in range(len(v))]
for i, j in enumerate(v):
for k in edges[j]:
edge[i].append(d[k])
bridge, _ = bridge_detection(edge)
for i, j in bridge:
u.union(v[i], v[j])
for _ in range(q):
x, y = map(lambda x: int(x) - 1, input().split())
if u.same(x, y):
print("Yes")
else:
print("No")
def bridge_detection(graph, start=0):
# 橋、二重辺連結成分
import sys
RECURSION_LIMIT = 10 ** 5
sys.setrecursionlimit(RECURSION_LIMIT)
n = len(graph)
order = [-1] * n
bridges = []
cycle_graph = [set() for _ in range(n)]
cnt = -1
def dfs(u, prev):
nonlocal cnt
cnt += 1
low_pt = order[u] = cnt
for v in graph[u]:
if v == prev:
continue
if order[v] == -1:
v_low_pt = dfs(v, u)
if v_low_pt > order[u]:
bridges.append(tuple(sorted([u, v])))
else:
cycle_graph[u].add(v)
cycle_graph[v].add(u)
low_pt = min(low_pt, v_low_pt)
else:
low_pt = min(low_pt, order[v])
cycle_graph[u].add(v)
cycle_graph[v].add(u)
return low_pt
dfs(start, -1)
return bridges, cycle_graph
class UnionFind:
def __init__(self, n: int) -> None:
self.n = n
self.parent = [-1] * n
self.groups = n
def find(self, x: int) -> int:
if self.parent[x] < 0:
return x
else:
p = x
while self.parent[p] >= 0:
p = self.parent[p]
while self.parent[x] >= 0:
self.parent[x], x = p, self.parent[x]
return p
def union(self, x: int, y: int) -> bool:
x = self.find(x)
y = self.find(y)
if x == y:
return False
if self.parent[x] > self.parent[y]:
x, y = y, x
self.parent[x] += self.parent[y]
self.parent[y] = x
self.groups -= 1
return True
def union_right(self, x: int, y: int) -> bool:
x = self.find(x)
y = self.find(y)
if x == y:
return False
if y > x:
x, y = y, x
self.parent[x] += self.parent[y]
self.parent[y] = x
self.groups -= 1
return True
def union_left(self, x: int, y: int) -> bool:
x = self.find(x)
y = self.find(y)
if x == y:
return False
if x > y:
x, y = y, x
self.parent[x] += self.parent[y]
self.parent[y] = x
self.groups -= 1
return True
def size(self, x: int) -> int:
return -self.parent[self.find(x)]
def same(self, x: int, y: int) -> bool:
return self.find(x) == self.find(y)
def members(self, x: int) -> list:
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self) -> list:
return [i for i, x in enumerate(self.parent) if x < 0]
def group_count(self) -> int:
return self.groups
def sizes(self) -> dict:
return {i: -x for i, x in enumerate(self.parent) if x < 0}
def all_group_members(self) -> dict:
from collections import defaultdict
d = defaultdict(list)
for i in range(self.n):
p = self.find(i)
d[p].append(i)
return d
def __str__(self) -> str:
return '\n'.join('{}: {}'.format(k, v)
for k, v in self.all_group_members().items())
if __name__ == '__main__':
resolve()
strangerxxx