結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
👑 |
| 提出日時 | 2022-08-31 07:03:22 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,363 bytes |
| コンパイル時間 | 23,905 ms |
| コンパイル使用メモリ | 376,692 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-07 23:30:33 |
| 合計ジャッジ時間 | 18,351 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
// -*- coding:utf-8-unix -*-
// モンゴメリ剰余乗算 (Montgomery modular multiplication)
pub trait MontTrait<T> {
fn new(n: T) -> Self;
fn add(&self, a: T, b: T) -> T;
fn sub(&self, a: T, b: T) -> T;
fn div2(&self, ar: T) -> T;
fn mrmul(&self, ar: T, br: T) -> T;
fn mr(&self, ar: T) -> T;
fn ar(&self, a: T) -> T;
fn powir(&self, ar: T, b: T) -> T;
}
pub struct Mont<T, BitCountType=u32> {
n: T, // n is odd, and n > 2
ni: T, // n * ni == 1 (mod 2**64)
nh: T, // == (n + 1) / 2
r: T, // == 2**64 (mod n)
rn: T, // == -(2**64) (mod n)
r2: T, // == 2**128 (mod n)
d: T, // == (n - 1) >> (n - 1).trailing_zeros()
k: BitCountType, // == (n - 1).trailing_zeros()
}
impl MontTrait<u64> for Mont<u64> {
#[inline]
fn new(n: u64) -> Self {
debug_assert_eq!(n & 1, 1);
// // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
// ni0 := n; // = 2*k+1 = (1+(2**2)*((k*(k+1))**1))/(2*k+1)
let mut ni = n;
// ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**4)*((k*(k+1))**2))/(2*k+1)
// ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**8)*((k*(k+1))**4))/(2*k+1)
// ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**16)*((k*(k+1))**8))/(2*k+1)
// ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**32)*((k*(k+1))**16))/(2*k+1)
// ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**64)*((k*(k+1))**32))/(2*k+1)
// // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64
for _ in 0..5 {
ni = ni.wrapping_mul(2u64.wrapping_sub(n.wrapping_mul(ni)));
}
debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64)
let nh = (n >> 1) + 1;
let r = n.wrapping_neg() % n; // == 2**64 (mod n)
let rn = n - r;
let r2 = ((n as u128).wrapping_neg() % (n as u128)) as u64; // == 2**128 (mod n)
let mut d = n - 1;
let k = d.trailing_zeros();
d >>= k;
debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mr(r), 1); // r / r == 1 (mod n)
debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n)
Self { n, ni, nh, r, rn, r2, d, k }
}
#[inline]
fn add(&self, a: u64, b: u64) -> u64 {
// == a + b (mod n)
debug_assert!(a < self.n);
debug_assert!(b < self.n);
let (t, fa) = a.overflowing_add(b);
let (u, fs) = t.overflowing_sub(self.n);
if fa { u } else { if fs { t } else { u } }
}
#[inline]
fn sub(&self, a: u64, b: u64) -> u64 {
// == a - b (mod n)
debug_assert!(a < self.n);
debug_assert!(b < self.n);
let (t, f) = a.overflowing_sub(b);
if f { t.wrapping_add(self.n) } else { t }
}
#[inline]
fn div2(&self, ar: u64) -> u64 {
// == ar / 2 (mod n)
debug_assert!(ar < self.n);
if (ar & 1) == 0 {
ar >> 1
} else {
(ar >> 1) + self.nh
}
}
#[inline]
fn mrmul(&self, ar: u64, br: u64) -> u64 {
// == (ar * br) / r (mod n)
debug_assert!(ar < self.n);
debug_assert!(br < self.n);
let (n, ni) = (self.n, self.ni);
let t: u128 = (ar as u128) * (br as u128);
let (t, f) = ((t >> 64) as u64).overflowing_sub((((((t as u64).wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64);
if f { t.wrapping_add(n) } else { t }
}
#[inline]
fn mr(&self, ar: u64) -> u64 {
// == ar / r (mod n)
debug_assert!(ar < self.n);
let (n, ni) = (self.n, self.ni);
let (t, f) = (((((ar.wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64).overflowing_neg();
if f { t.wrapping_add(n) } else { t }
}
#[inline]
fn ar(&self, a: u64) -> u64 {
// == a * r (mod n)
debug_assert!(a < self.n);
self.mrmul(a, self.r2)
}
#[inline]
fn powir(&self, mut ar: u64, mut b: u64) -> u64 {
// == ((ar / r) ** b) * r (mod n)
debug_assert!(ar < self.n);
let mut t = if (b & 1) == 0 { self.r } else { ar };
b >>= 1;
while b != 0 {
ar = self.mrmul(ar, ar);
if (b & 1) == 0 { t = self.mrmul(t, ar); }
b >>= 1;
}
t
}
}
// 64bit整数平方根(固定ループ回数) -> (floor(sqrt(iv)), remain)
#[inline]
fn isqrt64f(iv: u64) -> (u64, u64) { isqrt64i(iv, 0) }
// 64bit整数平方根(可変ループ回数) -> (floor(sqrt(iv)), remain)
#[inline]
#[allow(unused)]
fn isqrt64d(iv: u64) -> (u64, u64) { isqrt64i(iv, iv.leading_zeros()) }
// 64bit整数平方根(lz:ケチるループ回数*2+(0~1)、内部実装) -> (floor(sqrt(iv)), remain)
#[inline]
fn isqrt64i(iv: u64, lz: u32) -> (u64, u64) {
let n = (64 >> 1) - (lz >> 1);
let s = (lz >> 1) << 1;
let t = n << 1;
let (mut a, mut b, c, d, e) = (
iv as u128,
0x0000_0000_0000_0000_4000_0000_0000_0000 >> s,
0xffff_ffff_ffff_fffe_0000_0000_0000_0000 >> s,
0x0000_0000_0000_0001_0000_0000_0000_0000 >> s,
0x0000_0000_0000_0000_ffff_ffff_ffff_ffff >> s,
);
for _ in 0..n {
let f = ((b + b) & c) + (b & e);
if a >= b {
a -= b;
b = f + d;
} else {
b = f;
}
a <<= 2;
}
((b >> t) as u64, (a >> t) as u64)
}
// Jacobi symbol: ヤコビ記号
#[inline]
fn jacobi(a: i64, mut n: u64) -> i32 {
let (mut a, mut j): (u64, i32) = if a >= 0 { (a as u64, 1) } else if (n & 3) == 3 { ((-a) as u64, -1) } else { ((-a) as u64, 1) };
while a > 0 {
let ba = a.trailing_zeros();
a >>= ba;
if ((n & 7) == 3 || (n & 7) == 5) && (ba & 1) == 1 { j = -j; }
if (a & n & 3) == 3 { j = -j; }
let t = a; a = n; n = t; a %= n;
if a > (n >> 1) {
a = n - a;
if (n & 3) == 3 { j = -j; }
}
}
if n == 1 { j } else { 0 }
}
#[inline]
fn primetest_base2(mont: &Mont<u64>) -> bool {
// Mirrer-Rabin primality test (base 2)
// strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
let (r, rn, d, k) = (mont.r, mont.rn, mont.d, mont.k);
let mut br = mont.powir(mont.add(mont.r, mont.r), d);
if br == r || br == rn { return true; }
for _ in 1..k {
br = mont.mrmul(br, br);
if br == rn { return true; }
}
false
}
#[inline]
fn primetest_lucas(mont: &Mont<u64>) -> bool {
// Lucas primality test
// strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
let n = mont.n;
let mut d: i64 = 5;
for i in 0.. {
debug_assert!(i < 64);
match jacobi(d, n) {
-1 => break,
0 => if ((d.abs()) as u64) < n { return false; },
_ => {},
}
if i == 32 && isqrt64f(n).1 == 0 { return false; }
if (i & 1) == 1 { d = 2 - d; } else { d = -(d + 2); }
}
let qm = mont.ar(if d < 0 {((1 - d) as u64) / 4 % n} else {n - ((d - 1) as u64) / 4 % n});
let mut k = (n + 1) << (n + 1).leading_zeros();
let mut um = mont.r;
let mut vm = mont.r;
let mut qn = qm;
let dm: u64 = mont.ar(if d < 0 { n - (((-d) as u64) % n) } else { (d as u64) % n });
k <<= 1;
while k > 0 {
um = mont.mrmul(um, vm);
vm = mont.sub(mont.mrmul(vm, vm), mont.add(qn, qn));
qn = mont.mrmul(qn, qn);
if (k >> 63) != 0 {
let mut uu = mont.add(um, vm);
uu = mont.div2(uu);
vm = mont.add(mont.mrmul(dm, um), vm);
vm = mont.div2(vm);
um = uu;
qn = mont.mrmul(qn, qm);
}
k <<= 1;
}
if um == 0 || vm == 0 {
return true;
}
let mut x = (n + 1) & (!n);
x >>= 1;
while x > 0 {
um = mont.mrmul(um, vm);
vm = mont.sub(mont.mrmul(vm, vm), mont.add(qn, qn));
if vm == 0 {
return true;
}
qn = mont.mrmul(qn, qn);
x >>= 1;
}
false
}
// Baillie–PSW primarity test
pub fn primetest_bpsw(n: u64) -> bool {
if n == 2 { return true; }
if n == 1 || (n & 1) == 0 { return false; }
let mont = Mont::<u64>::new(n);
// Mirrer-Rabin primality test (base 2)
// strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
primetest_base2(&mont) &&
// Lucas primality test
// strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
primetest_lucas(&mont)
}
fn main() {
use std::io::{BufRead,Write};
let start_time = std::time::Instant::now();
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
let input = std::io::stdin();
let mut lines = std::io::BufReader::new(input.lock()).lines();
let n: usize = lines.next().unwrap().unwrap().parse().unwrap();
for _ in 0..n {
let x: u64 = lines.next().unwrap().unwrap().parse().unwrap();
puts!("{} {}\n", x, if primetest_bpsw(x) { "1" } else { "0" });
}
eprint!("{}us\n", start_time.elapsed().as_micros());
}