結果

問題 No.1781 LCM
ユーザー akakimidoriakakimidori
提出日時 2022-09-01 22:52:59
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 2,030 ms / 5,000 ms
コード長 12,025 bytes
コンパイル時間 15,020 ms
コンパイル使用メモリ 378,828 KB
実行使用メモリ 8,320 KB
最終ジャッジ日時 2024-11-15 22:24:30
合計ジャッジ時間 27,408 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 1 ms
6,816 KB
testcase_09 AC 1 ms
6,820 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 1 ms
6,820 KB
testcase_12 AC 1 ms
6,816 KB
testcase_13 AC 1 ms
6,820 KB
testcase_14 AC 1 ms
6,816 KB
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 1 ms
6,816 KB
testcase_18 AC 2 ms
6,816 KB
testcase_19 AC 1 ms
6,816 KB
testcase_20 AC 1 ms
6,816 KB
testcase_21 AC 2,028 ms
8,192 KB
testcase_22 AC 2,030 ms
8,320 KB
testcase_23 AC 1 ms
6,820 KB
testcase_24 AC 1 ms
6,816 KB
testcase_25 AC 2,025 ms
8,252 KB
testcase_26 AC 2,029 ms
8,320 KB
testcase_27 AC 2,001 ms
8,232 KB
testcase_28 AC 1,708 ms
7,552 KB
testcase_29 AC 463 ms
6,816 KB
testcase_30 AC 485 ms
6,816 KB
testcase_31 AC 1 ms
6,816 KB
testcase_32 AC 1 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
    input!(n: usize, m: usize);
    let mut pow = vec![M::zero(); 41];
    for i in 2..pow.len() {
        pow[i] = M::from(i).pow(n as u64);
    }
    let (s, l) = prime_count(m);
    let mut small = s
        .into_iter()
        .map(|s| M::from(s) * pow[2])
        .collect::<Vec<_>>();
    let mut large = l
        .into_iter()
        .map(|s| M::from(s) * pow[2])
        .collect::<Vec<_>>();
    sum_of_multicative_function(m, |_, c| pow[c + 1], &mut small, &mut large);
    println!("{}", large[1] + M::one());
}

// 素数のみの初期値を与えた時になんかうまいこと計算してくれるやつ、のはず
// 結果の列には1は含まれない
pub fn sum_of_multicative_function<F>(n: usize, f: F, small: &mut [M], large: &mut [M])
where
    F: Fn(usize, usize) -> M,
{
    let sqrt = (1..).find(|k| k * k > n).unwrap() - 1;
    assert!(small.len() == large.len() && small.len() == sqrt + 1);
    let mut prime = vec![];
    enumerate_prime(sqrt, |p| prime.push(p));
    for &p in prime.iter().rev() {
        let sub = small[p];
        for i in (1..=sqrt).take_while(|i| i * p * p <= n) {
            let mut pos = i * p;
            let mut c = 1;
            while pos <= sqrt {
                if c > 1 {
                    large[i] += f(p, c);
                }
                large[i] = large[i] + f(p, c) * (large[pos] - sub);
                pos *= p;
                c += 1;
            }
            pos = n / pos;
            while pos >= p {
                if c > 1 {
                    large[i] += f(p, c);
                }
                large[i] = large[i] + f(p, c) * (small[pos] - sub);
                pos /= p;
                c += 1;
            }
            large[i] += f(p, c);
        }
        for i in ((p * p)..=sqrt).rev() {
            let mut pos = i / p;
            let mut c = 1;
            while pos >= p {
                if c > 1 {
                    small[i] += f(p, c);
                }
                small[i] = small[i] + f(p, c) * (small[pos] - sub);
                pos /= p;
                c += 1;
            }
            small[i] += f(p, c);
        }
    }
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin prime count ----------
// pi(i): i以下の素数の数
// small[i]: pi(i)
// large[i]: pi(floor(n / i))
// として、 (small, large) を返す
// O(N^(3/4))
pub fn prime_count(n: usize) -> (Vec<usize>, Vec<usize>) {
    let sqrt = (1..).find(|p| p * p > n).unwrap() - 1;
    let mut large = vec![0; sqrt + 1];
    let mut small = vec![0; sqrt + 1];
    for (i, (large, small)) in large.iter_mut().zip(&mut small).enumerate().skip(1) {
        *large = n / i - 1;
        *small = i - 1;
    }
    fn mydiv(a: usize, b: u32) -> u32 {
        (a as f64 / b as f64) as u32
    }
    for p in 2..=sqrt {
        if small[p] == small[p - 1] {
            continue;
        }
        let pi = small[p] - 1;
        let q = p * p;
        let d = sqrt / p;
        for i in 1..=d {
            large[i] -= large[i * p] - pi;
        }
        let m = n / p;
        let r = sqrt.min(n / q);
        for i in (d + 1)..=r {
            large[i] -= small[mydiv(m, i as u32) as usize] - pi;
        }
        for i in (p..=d).rev() {
            let sub = small[i] - pi;
            small[(i * p)..].iter_mut().take(p).for_each(|p| *p -= sub);
        }
    }
    (small, large)
}
// ---------- end prime count ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

// ---------- begin enumerate prime ----------
pub fn enumerate_prime<F>(n: usize, mut f: F)
where
    F: FnMut(usize),
{
    assert!(1 <= n && n <= 5 * 10usize.pow(8));
    let batch = (n as f64).sqrt().ceil() as usize;
    let mut is_prime = vec![true; batch + 1];
    for i in (2..).take_while(|p| p * p <= batch) {
        if is_prime[i] {
            let mut j = i * i;
            while let Some(p) = is_prime.get_mut(j) {
                *p = false;
                j += i;
            }
        }
    }
    let mut prime = vec![];
    for (i, p) in is_prime.iter().enumerate().skip(2) {
        if *p && i <= n {
            f(i);
            prime.push(i);
        }
    }
    let mut l = batch + 1;
    while l <= n {
        let r = std::cmp::min(l + batch, n + 1);
        is_prime.clear();
        is_prime.resize(r - l, true);
        for &p in prime.iter() {
            let mut j = (l + p - 1) / p * p - l;
            while let Some(is_prime) = is_prime.get_mut(j) {
                *is_prime = false;
                j += p;
            }
        }
        for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
            f(i + l);
        }
        l += batch;
    }
}
// ---------- end enumerate prime ----------

0