結果
問題 | No.1781 LCM |
ユーザー | akakimidori |
提出日時 | 2022-09-01 22:52:59 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 2,030 ms / 5,000 ms |
コード長 | 12,025 bytes |
コンパイル時間 | 15,020 ms |
コンパイル使用メモリ | 378,828 KB |
実行使用メモリ | 8,320 KB |
最終ジャッジ日時 | 2024-11-15 22:24:30 |
合計ジャッジ時間 | 27,408 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 1 ms
6,816 KB |
testcase_13 | AC | 1 ms
6,820 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 1 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 1 ms
6,816 KB |
testcase_20 | AC | 1 ms
6,816 KB |
testcase_21 | AC | 2,028 ms
8,192 KB |
testcase_22 | AC | 2,030 ms
8,320 KB |
testcase_23 | AC | 1 ms
6,820 KB |
testcase_24 | AC | 1 ms
6,816 KB |
testcase_25 | AC | 2,025 ms
8,252 KB |
testcase_26 | AC | 2,029 ms
8,320 KB |
testcase_27 | AC | 2,001 ms
8,232 KB |
testcase_28 | AC | 1,708 ms
7,552 KB |
testcase_29 | AC | 463 ms
6,816 KB |
testcase_30 | AC | 485 ms
6,816 KB |
testcase_31 | AC | 1 ms
6,816 KB |
testcase_32 | AC | 1 ms
6,816 KB |
ソースコード
fn main() { input!(n: usize, m: usize); let mut pow = vec![M::zero(); 41]; for i in 2..pow.len() { pow[i] = M::from(i).pow(n as u64); } let (s, l) = prime_count(m); let mut small = s .into_iter() .map(|s| M::from(s) * pow[2]) .collect::<Vec<_>>(); let mut large = l .into_iter() .map(|s| M::from(s) * pow[2]) .collect::<Vec<_>>(); sum_of_multicative_function(m, |_, c| pow[c + 1], &mut small, &mut large); println!("{}", large[1] + M::one()); } // 素数のみの初期値を与えた時になんかうまいこと計算してくれるやつ、のはず // 結果の列には1は含まれない pub fn sum_of_multicative_function<F>(n: usize, f: F, small: &mut [M], large: &mut [M]) where F: Fn(usize, usize) -> M, { let sqrt = (1..).find(|k| k * k > n).unwrap() - 1; assert!(small.len() == large.len() && small.len() == sqrt + 1); let mut prime = vec![]; enumerate_prime(sqrt, |p| prime.push(p)); for &p in prime.iter().rev() { let sub = small[p]; for i in (1..=sqrt).take_while(|i| i * p * p <= n) { let mut pos = i * p; let mut c = 1; while pos <= sqrt { if c > 1 { large[i] += f(p, c); } large[i] = large[i] + f(p, c) * (large[pos] - sub); pos *= p; c += 1; } pos = n / pos; while pos >= p { if c > 1 { large[i] += f(p, c); } large[i] = large[i] + f(p, c) * (small[pos] - sub); pos /= p; c += 1; } large[i] += f(p, c); } for i in ((p * p)..=sqrt).rev() { let mut pos = i / p; let mut c = 1; while pos >= p { if c > 1 { small[i] += f(p, c); } small[i] = small[i] + f(p, c) * (small[pos] - sub); pos /= p; c += 1; } small[i] += f(p, c); } } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin prime count ---------- // pi(i): i以下の素数の数 // small[i]: pi(i) // large[i]: pi(floor(n / i)) // として、 (small, large) を返す // O(N^(3/4)) pub fn prime_count(n: usize) -> (Vec<usize>, Vec<usize>) { let sqrt = (1..).find(|p| p * p > n).unwrap() - 1; let mut large = vec![0; sqrt + 1]; let mut small = vec![0; sqrt + 1]; for (i, (large, small)) in large.iter_mut().zip(&mut small).enumerate().skip(1) { *large = n / i - 1; *small = i - 1; } fn mydiv(a: usize, b: u32) -> u32 { (a as f64 / b as f64) as u32 } for p in 2..=sqrt { if small[p] == small[p - 1] { continue; } let pi = small[p] - 1; let q = p * p; let d = sqrt / p; for i in 1..=d { large[i] -= large[i * p] - pi; } let m = n / p; let r = sqrt.min(n / q); for i in (d + 1)..=r { large[i] -= small[mydiv(m, i as u32) as usize] - pi; } for i in (p..=d).rev() { let sub = small[i] - pi; small[(i * p)..].iter_mut().take(p).for_each(|p| *p -= sub); } } (small, large) } // ---------- end prime count ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo<const M: u32>; impl<const M: u32> Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl<T> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> Default for ModInt<T> { fn default() -> Self { Self::zero() } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl<T> ModInt<T> { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl<T: Modulo> ModInt<T> { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<T> { fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, inv: Vec<ModInt<T>>, } impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt<ConstantModulo<998_244_353>>; // ---------- begin enumerate prime ---------- pub fn enumerate_prime<F>(n: usize, mut f: F) where F: FnMut(usize), { assert!(1 <= n && n <= 5 * 10usize.pow(8)); let batch = (n as f64).sqrt().ceil() as usize; let mut is_prime = vec![true; batch + 1]; for i in (2..).take_while(|p| p * p <= batch) { if is_prime[i] { let mut j = i * i; while let Some(p) = is_prime.get_mut(j) { *p = false; j += i; } } } let mut prime = vec![]; for (i, p) in is_prime.iter().enumerate().skip(2) { if *p && i <= n { f(i); prime.push(i); } } let mut l = batch + 1; while l <= n { let r = std::cmp::min(l + batch, n + 1); is_prime.clear(); is_prime.resize(r - l, true); for &p in prime.iter() { let mut j = (l + p - 1) / p * p - l; while let Some(is_prime) = is_prime.get_mut(j) { *is_prime = false; j += p; } } for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) { f(i + l); } l += batch; } } // ---------- end enumerate prime ----------