結果
問題 | No.2067 ±2^k operations |
ユーザー | magurofly |
提出日時 | 2022-09-02 22:00:46 |
言語 | Rust (1.77.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,335 bytes |
コンパイル時間 | 15,222 ms |
コンパイル使用メモリ | 401,200 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-16 03:26:33 |
合計ジャッジ時間 | 22,782 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 26 ms
6,816 KB |
testcase_20 | AC | 30 ms
6,820 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
ソースコード
fn read_line(stdin: &mut std::io::Stdin) -> String { let mut str = String::new(); stdin.read_line(&mut str).unwrap(); str } /// 例: 桁DP /// ## 問題文 /// 正整数 L, R, M が与えられます。 L, R は共に 10 進法表現の長さが N の整数です。 /// L, R をそれぞれ M/N 回繰り返したものを L', R' とします。 /// L' 以上 R' 以下の整数の総和を求めてください。 fn main() { let digits = &[0, 1]; let mut stdin = std::io::stdin(); let t = read_line(&mut stdin).trim().parse::<usize>().unwrap(); for _ in 0 .. t { let mut n = read_line(&mut stdin).trim().parse::<i64>().unwrap(); let mut ub = vec![]; while n > 0 { ub.push(n % 2); n /= 2; } ub.reverse(); let automaton = AutomatonDP::digit_lte(digits, &ub); let ans = automaton.compute::<(i64, i64, i64, i64), _, _, _, _>(ub.len(), |(x1, z1, o1, d1), (x2, z2, o2, d2)| (x1 + x2, z1 + z2, o1 + o2, d1 + d2), || (0, 0, 0, 0), |&(x, z, o, d), c| if c == 0 { (x, z + o + d, 0, 0) } else { (x + z + o, 0, z, d + o) }, || (0, 1, 0, 0)); println!("{}", ans.0); } } use std::collections::*; use std::hash::Hash; /// オートマトン(DFA)が受理するすべての文字列に対して DP をする /// - `Q`: 状態の型 /// - `C`: 入力の型 pub struct AutomatonDP<Q, C> { transition: HashMap<Q, HashMap<C, Q>>, init: Q, accept: Vec<Q>, } impl<Q, C> AutomatonDP<Q, C> where Q: Copy + Eq + Hash, C: Copy + Eq + Hash { /// 初期状態が `init` のオートマトンを作成する pub fn new(init: Q) -> Self { Self { transition: HashMap::new(), init, accept: Vec::new(), } } /// 遷移を追加する /// `from` 状態のとき、 `input` が来ると `to` 状態に遷移する pub fn add_transition(&mut self, from: Q, input: C, to: Q) { self.transition.entry(from).or_insert_with(HashMap::new).insert(input, to); } /// 遷移を削除する pub fn remove_transition(&mut self, from: Q, input: C) { self.transition.entry(from).and_modify(|tr| { tr.remove(&input); }); } /// 受理状態を追加する pub fn accept(&mut self, state: Q) { self.accept.push(state); } /// 受理状態を削除する /// O(accept.len()) pub fn reject(&mut self, state: Q) { let mut prev = 0; while let Some(index) = (prev .. self.accept.len()).find(|&i| self.accept[i] == state) { self.accept.swap_remove(index); prev = index; } } /// 受理状態をクリアする pub fn reject_all(&mut self) { self.accept.clear(); } /// 状態を変換する pub fn map<R, Map>(&self, map: Map) -> AutomatonDP<R, C> where R: Copy + Eq + Hash, Map: Fn(Q) -> R, { let mut transition = HashMap::new(); for (&p, tr) in &self.transition { let mut tr2 = HashMap::new(); for (&c, &q) in tr { tr2.insert(c, (map)(q)); } transition.insert((map)(p), tr2); } let accept = self.accept.iter().map(|&q| (map)(q)).collect(); let init = (map)(self.init); AutomatonDP { transition, accept, init } } /// 長さ `n` のすべての文字列に対して DP をする /// - `op`: 加法 /// - `e`: 加法単位元を返す /// - `map`: 乗法っぽいやつ /// - `empty`: 空列に対する結果を返す /// /// ただし、乗せる値は半環(っぽいやつ)でないといけない /// つまり: /// ``` /// assert_eq!((op)(x, (op)(y, z)), (op)((op)(x, y), z)); /// assert_eq!((op)(x, (e)()), x); /// assert_eq!((op)((e)(), x), x); /// assert_eq!((op)(x, y), (op)(y, x)); /// assert_eq!((map)(c, (op)(x, y)), (op)((map)(c, x), (map)(c, y))); /// ``` /// 計算量: O(n (状態数 + 遷移数)) pub fn compute<S, Op, E, Map, Empty>(&self, n: usize, op: Op, e: E, map: Map, empty: Empty) -> S where S: Clone + Sized, Op: Fn(&S, &S) -> S, E: Fn() -> S, Map: Fn(&S, C) -> S, Empty: Fn() -> S, { let mut dp = HashMap::new(); dp.insert(self.init, (empty)()); for _ in 0 .. n { dp = self.dp_forward(&dp, &op, &e, &map); } let mut ans = (e)(); for &q in &self.accept { ans = (op)(&ans, &dp.get(&q).cloned().unwrap_or_else(|| (e)())); } ans } pub fn dp_forward<S, Op, E, Map>(&self, dp: &HashMap<Q, S>, op: &Op, e: &E, map: &Map) -> HashMap<Q, S> where S: Clone + Sized, Op: Fn(&S, &S) -> S, E: Fn() -> S, Map: Fn(&S, C) -> S, { let mut dp2 = HashMap::new(); for (&from, value) in dp { for (&input, &to) in &self.transition[&from] { let x = dp2.entry(to).or_insert_with(|| (e)()); let y = (op)(&x, &(map)(value, input)); *x = y; } } dp2 } /// 論理積をとる pub fn intersection<R>(&self, other: &AutomatonDP<R, C>) -> AutomatonDP<(Q, R), C> where R: Copy + Eq + Hash { let mut transition = HashMap::new(); for (&p1, tr1) in &self.transition { for (&c, &q1) in tr1 { for (&p2, tr2) in &other.transition { if let Some(&q2) = tr2.get(&c) { transition.entry((p1, p2)).or_insert_with(HashMap::new).insert(c, (q1, q2)); } } } } let mut accept = Vec::new(); for &q1 in &self.accept { for &q2 in &other.accept { accept.push((q1, q2)); } } AutomatonDP { init: (self.init, other.init), transition, accept, } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum DigitDPState { BothBounded(usize), LowerBounded(usize), UpperBounded(usize), Unbounded(usize), } impl<C> AutomatonDP<DigitDPState, C> where C: Copy + Eq + Hash { /// 辞書順で upper_bound 以下の数列を受理するオートマトンを作成 /// 頂点数 O(upper_bound.len()) /// 辺数 O(upper_bound.len() * digits.len()) pub fn digit_lte(digits: &[C], upper_bound: &[C]) -> Self { use DigitDPState::*; let n = upper_bound.len(); let mut automaton = AutomatonDP::new(UpperBounded(0)); automaton.accept(UpperBounded(n)); automaton.accept(Unbounded(n)); for i in 0 ..= n { let r = upper_bound[i % n]; for &c in digits { automaton.add_transition(Unbounded(i), c, Unbounded(i % n + 1)); } for &c in digits { if c == r { automaton.add_transition(UpperBounded(i), c, UpperBounded(i % n + 1)); break; } automaton.add_transition(UpperBounded(i), c, Unbounded(i % n + 1)); } } automaton } /// 辞書順で lower_bound 以上の数列を受理するオートマトンを作成 /// 頂点数 O(lower_bound.len()) /// 辺数 O(lower_bound.len() * digits.len()) pub fn digit_gte(digits: &[C], lower_bound: &[C]) -> Self { use DigitDPState::*; let n = lower_bound.len(); let mut automaton = AutomatonDP::new(LowerBounded(0)); automaton.accept(LowerBounded(n)); automaton.accept(Unbounded(n)); for i in 0 ..= n { let l = lower_bound[i % n]; for &c in digits { automaton.add_transition(Unbounded(i), c, Unbounded(i % n + 1)); } for &c in digits.into_iter().rev() { if c == l { automaton.add_transition(LowerBounded(i), c, LowerBounded(i % n + 1)); break; } automaton.add_transition(LowerBounded(i), c, Unbounded(i % n + 1)); } } automaton } /// 辞書順で lower_bound 以上 upper_bound 以下の数列を受理するオートマトンを作成 pub fn digit_between(digits: &[C], lower_bound: &[C], upper_bound: &[C]) -> Self { use DigitDPState::*; assert_eq!(upper_bound.len(), lower_bound.len()); let n = lower_bound.len(); let s = digits.len(); let mut automaton = AutomatonDP::new(BothBounded(0)); automaton.accept(BothBounded(n)); automaton.accept(LowerBounded(n)); automaton.accept(UpperBounded(n)); automaton.accept(Unbounded(n)); for i in 0 ..= n { let (l, r) = (lower_bound[i % n], upper_bound[i % n]); for &c in digits { automaton.add_transition(Unbounded(i), c, Unbounded(i % n + 1)); } for &c in digits.into_iter().rev() { if c == l { automaton.add_transition(LowerBounded(i), c, LowerBounded(i % n + 1)); break; } automaton.add_transition(LowerBounded(i), c, Unbounded(i % n + 1)); } for &c in digits { if c == r { automaton.add_transition(UpperBounded(i), c, UpperBounded(i % n + 1)); break; } automaton.add_transition(UpperBounded(i), c, Unbounded(i % n + 1)); } let lower = (0 .. s).find(|&j| digits[j] == l).unwrap(); let upper = (0 .. s).find(|&j| digits[j] == r).unwrap(); if lower == upper { automaton.add_transition(BothBounded(i), digits[lower], BothBounded(i % n + 1)); } else if lower < upper { automaton.add_transition(BothBounded(i), digits[lower], LowerBounded(i % n + 1)); automaton.add_transition(BothBounded(i), digits[upper], UpperBounded(i % n + 1)); for &c in &digits[lower + 1 .. upper] { automaton.add_transition(BothBounded(i), c, Unbounded(i % n + 1)); } } } automaton } }