結果
| 問題 | No.2066 Simple Math ! |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-09-02 22:15:02 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,754 bytes |
| 記録 | |
| コンパイル時間 | 275 ms |
| コンパイル使用メモリ | 82,328 KB |
| 実行使用メモリ | 164,736 KB |
| 最終ジャッジ日時 | 2024-11-16 03:57:39 |
| 合計ジャッジ時間 | 57,220 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 9 WA * 7 TLE * 15 |
ソースコード
import sys,random,bisect
from collections import deque,defaultdict,Counter
from heapq import heapify,heappop,heappush
from itertools import cycle, permutations
from math import log,gcd
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def floor_sum(n: int, m: int, a: int, b: int) -> int:
ans = 0
if a >= m:
ans += (n - 1) * n * (a // m) // 2
a %= m
if b >= m:
ans += n * (b // m)
b %= m
y_max = (a * n + b) // m
x_max = y_max * m - b
if y_max == 0:
return ans
ans += (n - (x_max + a - 1) // a) * y_max
ans += floor_sum(y_max, a, m, (a - x_max % a) % a)
return ans
def _inv_gcd(a,b):
a %= b
if a == 0:
return (b, 0)
# Contracts:
# [1] s - m0 * a = 0 (mod b)
# [2] t - m1 * a = 0 (mod b)
# [3] s * |m1| + t * |m0| <= b
s = b
t = a
m0 = 0
m1 = 1
while t:
u = s // t
s -= t * u
m0 -= m1 * u # |m1 * u| <= |m1| * s <= b
# [3]:
# (s - t * u) * |m1| + t * |m0 - m1 * u|
# <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
# = s * |m1| + t * |m0| <= b
s, t = t, s
m0, m1 = m1, m0
# by [3]: |m0| <= b/g
# by g != b: |m0| < b/g
if m0 < 0:
m0 += b // s
return (s, m0)
def crt(r,m):
assert len(r) == len(m)
n = len(r)
# Contracts: 0 <= r0 < m0
r0 = 0
m0 = 1
for i in range(n):
assert 1 <= m[i]
r1 = r[i] % m[i]
m1 = m[i]
if m0 < m1:
r0, r1 = r1, r0
m0, m1 = m1, m0
if m0 % m1 == 0:
if r0 % m1 != r1:
return (0, 0)
continue
# assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
'''
(r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
r2 % m0 = r0
r2 % m1 = r1
-> (r0 + x*m0) % m1 = r1
-> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
-> x = (r1 - r0) / g * inv(u0) (mod u1)
'''
# im = inv(u0) (mod u1) (0 <= im < u1)
g, im = _inv_gcd(m0, m1)
u1 = m1 // g
# |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
if (r1 - r0) % g:
return (0, 0)
# u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
x = (r1 - r0) // g % u1 * im % u1
'''
|r0| + |m0 * x|
< m0 + m0 * (u1 - 1)
= m0 + m0 * m1 / g - m0
= lcm(m0, m1)
'''
r0 += x * m0
m0 *= u1 # -> lcm(m0, m1)
if r0 < 0:
r0 += m0
return (r0, m0)
def calc(P,Q,K):
g = gcd(P,Q)
p,q = P//g,Q//g
r0,m0 = crt([1,0],[p,q])
x0,y0 = (1-r0)//p,r0//q
assert p*x0 + q*y0 == 1
assert 0 <= y0
#print((x0,y0))
if 0 <= x0:
return K
x0 *= -1
PQ_less = floor_sum(p*q-1,p,y0,y0) - floor_sum(p*q-1,q,x0,x0-1)
def cnt(m):
if m < p*q:
return floor_sum(m,p,y0,y0) - floor_sum(m,q,x0,x0-1)
else:
return PQ_less + m-p*q+1
ok = 10**18
ng = 0
while ok-ng>1:
mid = (ok+ng)//2
if cnt(mid) >= K:
ok = mid
else:
ng = mid
res = ok
res *= g
return res
def brute(P,Q,K):
g = gcd(P,Q)
P,Q = P//g,Q//g
res = []
for i in range(Q):
for j in range(P):
if (i,j)!=(0,0) and P*i+Q*j < P*Q:
res.append(P*i+Q*j)
res = sorted(set(res))
if len(res) >= K:
return res[K-1] * g
else:
return (P*Q + K - len(res) - 1) * g
for _ in range(int(input())):
P,Q,K = mi()
print(calc(P,Q,K))
#print(brute(P,Q,K))