結果

問題 No.2068 Restricted Permutation
ユーザー akakimidori
提出日時 2022-09-02 23:02:50
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 11 ms / 2,000 ms
コード長 9,893 bytes
コンパイル時間 12,761 ms
コンパイル使用メモリ 400,480 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 05:40:17
合計ジャッジ時間 14,005 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `std::io::Write`
  --> src/main.rs:13:5
   |
13 | use std::io::Write;
   |     ^^^^^^^^^^^^^^
   |
   = note: `#[warn(unused_imports)]` on by default

warning: type alias `Map` is never used
  --> src/main.rs:15:6
   |
15 | type Map<K, V> = BTreeMap<K, V>;
   |      ^^^
   |
   = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
  --> src/main.rs:16:6
   |
16 | type Set<T> = BTreeSet<T>;
   |      ^^^

warning: type alias `Deque` is never used
  --> src/main.rs:17:6
   |
17 | type Deque<T> = VecDeque<T>;
   |      ^^^^^

warning: function `test` is never used
  --> src/main.rs:58:4
   |
58 | fn test() {
   |    ^^^^

warning: function `next_permutation` is never used
  --> src/main.rs:87:4
   |
87 | fn next_permutation<T: Ord>(a: &mut [T]) -> bool {
   |    ^^^^^^^^^^^^^^^^

ソースコード

diff #
プレゼンテーションモードにする

// ... x ....
// less
// x
//
// (N-K)! 2
//
// C(N-1, K-1) * (K-1)! * C((N-K)!, 2)
//
// x
//
use std::collections::*;
use std::io::Write;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn run() {
input! {
n: usize,
k: usize,
x: usize1,
}
let pc = Precalc::new(n + 2);
let mut ans = M::zero();
ans += pc.binom(n - 1, k - 1)
* pc.fact(k - 1)
* pc.fact(n - k)
* (pc.fact(n - k) - M::one())
* pc.inv(2);
if n >= 2 {
ans += M::from(x) * pc.binom(n - 2, k - 1) * pc.fact(k - 1) * pc.fact(n - k).pow(2);
}
for i in 0..(k - 1) {
// x
if n >= 2 {
let mut way = M::from(n - 1 - x);
way *= pc.binom(n - 2, i) * pc.fact(i);
way *= pc.fact(n - 1 - i);
if i <= n - 2 {
way *= pc.fact(n - 2 - i);
}
ans += way;
}
//
if n >= 3 {
let mut way = pc.binom(n, 2) - M::from(n - 1 - x) - M::from(x);
way *= pc.binom(n - 3, i) * pc.fact(i);
way *= pc.fact(n - 1 - i);
way *= pc.fact(n - 2 - i);
ans += way;
}
}
println!("{}", ans);
}
fn test() {
for n in 1..=6 {
for x in 0..n {
for k in 0..n {
let mut p = (0..n).collect::<Vec<_>>();
let mut ans = 0;
while {
if p[k] == x {
let mut q = (0..n).collect::<Vec<_>>();
while {
if q < p {
ans += 1;
}
next_permutation(&mut q)
} {}
}
next_permutation(&mut p)
} {}
println!("{} {} {}: {}", n, k, x, ans);
}
}
}
}
fn main() {
run();
}
// ---------- begin next_permutation ----------
fn next_permutation<T: Ord>(a: &mut [T]) -> bool {
a.windows(2).rposition(|a| a[0] < a[1]).map_or(false, |x| {
let y = a.iter().rposition(|b| a[x] < *b).unwrap();
a.swap(x, y);
a[(x + 1)..].reverse();
true
})
}
// ---------- end next_permutation ----------
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub struct ConstantModulo<const M: u32>;
impl<const M: u32> Modulo for ConstantModulo<{ M }> {
fn modulo() -> u32 {
M
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
Self::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= T::modulo() {
v -= T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
Self::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.is_zero() {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
if v >= T::modulo() {
v -= T::modulo();
}
ModInt::new_unchecked(v)
}
}
impl<T> ModInt<T> {
pub fn new_unchecked(n: u32) -> Self {
ModInt(n, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow(T::modulo() as u64 - 2)
}
pub fn fact(n: usize) -> Self {
(1..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn perm(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
inv: Vec<ModInt<T>>,
}
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..=n {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc { fact, ifact, inv }
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
type M = ModInt<ConstantModulo<998_244_353>>;
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0