結果
問題 | No.2068 Restricted Permutation |
ユーザー |
![]() |
提出日時 | 2022-09-02 23:02:50 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 9,893 bytes |
コンパイル時間 | 12,761 ms |
コンパイル使用メモリ | 400,480 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 05:40:17 |
合計ジャッジ時間 | 14,005 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:13:5 | 13 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:15:6 | 15 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:16:6 | 16 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:17:6 | 17 | type Deque<T> = VecDeque<T>; | ^^^^^ warning: function `test` is never used --> src/main.rs:58:4 | 58 | fn test() { | ^^^^ warning: function `next_permutation` is never used --> src/main.rs:87:4 | 87 | fn next_permutation<T: Ord>(a: &mut [T]) -> bool { | ^^^^^^^^^^^^^^^^
ソースコード
// ... x ....// less が決まる瞬間// 左、x、 右// 右の場合// (N-K)! から2つ選ぶものと対応// 左の順列と合わせて// C(N-1, K-1) * (K-1)! * C((N-K)!, 2)//// x で決まる場合//use std::collections::*;use std::io::Write;type Map<K, V> = BTreeMap<K, V>;type Set<T> = BTreeSet<T>;type Deque<T> = VecDeque<T>;fn run() {input! {n: usize,k: usize,x: usize1,}let pc = Precalc::new(n + 2);let mut ans = M::zero();ans += pc.binom(n - 1, k - 1)* pc.fact(k - 1)* pc.fact(n - k)* (pc.fact(n - k) - M::one())* pc.inv(2);if n >= 2 {ans += M::from(x) * pc.binom(n - 2, k - 1) * pc.fact(k - 1) * pc.fact(n - k).pow(2);}for i in 0..(k - 1) {// 小さい方がxのパターンif n >= 2 {let mut way = M::from(n - 1 - x);way *= pc.binom(n - 2, i) * pc.fact(i);way *= pc.fact(n - 1 - i);if i <= n - 2 {way *= pc.fact(n - 2 - i);}ans += way;}// そうでないパターンif n >= 3 {let mut way = pc.binom(n, 2) - M::from(n - 1 - x) - M::from(x);way *= pc.binom(n - 3, i) * pc.fact(i);way *= pc.fact(n - 1 - i);way *= pc.fact(n - 2 - i);ans += way;}}println!("{}", ans);}fn test() {for n in 1..=6 {for x in 0..n {for k in 0..n {let mut p = (0..n).collect::<Vec<_>>();let mut ans = 0;while {if p[k] == x {let mut q = (0..n).collect::<Vec<_>>();while {if q < p {ans += 1;}next_permutation(&mut q)} {}}next_permutation(&mut p)} {}println!("{} {} {}: {}", n, k, x, ans);}}}}fn main() {run();}// ---------- begin next_permutation ----------fn next_permutation<T: Ord>(a: &mut [T]) -> bool {a.windows(2).rposition(|a| a[0] < a[1]).map_or(false, |x| {let y = a.iter().rposition(|b| a[x] < *b).unwrap();a.swap(x, y);a[(x + 1)..].reverse();true})}// ---------- end next_permutation ----------// ---------- begin input macro ----------// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8#[macro_export]macro_rules! input {(source = $s:expr, $($r:tt)*) => {let mut iter = $s.split_whitespace();input_inner!{iter, $($r)*}};($($r:tt)*) => {let s = {use std::io::Read;let mut s = String::new();std::io::stdin().read_to_string(&mut s).unwrap();s};let mut iter = s.split_whitespace();input_inner!{iter, $($r)*}};}#[macro_export]macro_rules! input_inner {($iter:expr) => {};($iter:expr, ) => {};($iter:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($iter, $t);input_inner!{$iter $($r)*}};}#[macro_export]macro_rules! read_value {($iter:expr, ( $($t:tt),* )) => {( $(read_value!($iter, $t)),* )};($iter:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()};($iter:expr, chars) => {read_value!($iter, String).chars().collect::<Vec<char>>()};($iter:expr, bytes) => {read_value!($iter, String).bytes().collect::<Vec<u8>>()};($iter:expr, usize1) => {read_value!($iter, usize) - 1};($iter:expr, $t:ty) => {$iter.next().unwrap().parse::<$t>().expect("Parse error")};}// ---------- end input macro ----------// ---------- begin modint ----------use std::marker::*;use std::ops::*;pub trait Modulo {fn modulo() -> u32;}pub struct ConstantModulo<const M: u32>;impl<const M: u32> Modulo for ConstantModulo<{ M }> {fn modulo() -> u32 {M}}pub struct ModInt<T>(u32, PhantomData<T>);impl<T> Clone for ModInt<T> {fn clone(&self) -> Self {Self::new_unchecked(self.0)}}impl<T> Copy for ModInt<T> {}impl<T: Modulo> Add for ModInt<T> {type Output = ModInt<T>;fn add(self, rhs: Self) -> Self::Output {let mut v = self.0 + rhs.0;if v >= T::modulo() {v -= T::modulo();}Self::new_unchecked(v)}}impl<T: Modulo> AddAssign for ModInt<T> {fn add_assign(&mut self, rhs: Self) {*self = *self + rhs;}}impl<T: Modulo> Sub for ModInt<T> {type Output = ModInt<T>;fn sub(self, rhs: Self) -> Self::Output {let mut v = self.0 - rhs.0;if self.0 < rhs.0 {v += T::modulo();}Self::new_unchecked(v)}}impl<T: Modulo> SubAssign for ModInt<T> {fn sub_assign(&mut self, rhs: Self) {*self = *self - rhs;}}impl<T: Modulo> Mul for ModInt<T> {type Output = ModInt<T>;fn mul(self, rhs: Self) -> Self::Output {let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;Self::new_unchecked(v as u32)}}impl<T: Modulo> MulAssign for ModInt<T> {fn mul_assign(&mut self, rhs: Self) {*self = *self * rhs;}}impl<T: Modulo> Neg for ModInt<T> {type Output = ModInt<T>;fn neg(self) -> Self::Output {if self.is_zero() {Self::zero()} else {Self::new_unchecked(T::modulo() - self.0)}}}impl<T> std::fmt::Display for ModInt<T> {fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {write!(f, "{}", self.0)}}impl<T> std::fmt::Debug for ModInt<T> {fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {write!(f, "{}", self.0)}}impl<T> Default for ModInt<T> {fn default() -> Self {Self::zero()}}impl<T: Modulo> std::str::FromStr for ModInt<T> {type Err = std::num::ParseIntError;fn from_str(s: &str) -> Result<Self, Self::Err> {let val = s.parse::<u32>()?;Ok(ModInt::new(val))}}impl<T: Modulo> From<usize> for ModInt<T> {fn from(val: usize) -> ModInt<T> {ModInt::new_unchecked((val % T::modulo() as usize) as u32)}}impl<T: Modulo> From<u64> for ModInt<T> {fn from(val: u64) -> ModInt<T> {ModInt::new_unchecked((val % T::modulo() as u64) as u32)}}impl<T: Modulo> From<i64> for ModInt<T> {fn from(val: i64) -> ModInt<T> {let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;if v >= T::modulo() {v -= T::modulo();}ModInt::new_unchecked(v)}}impl<T> ModInt<T> {pub fn new_unchecked(n: u32) -> Self {ModInt(n, PhantomData)}pub fn zero() -> Self {ModInt::new_unchecked(0)}pub fn one() -> Self {ModInt::new_unchecked(1)}pub fn is_zero(&self) -> bool {self.0 == 0}}impl<T: Modulo> ModInt<T> {pub fn new(d: u32) -> Self {ModInt::new_unchecked(d % T::modulo())}pub fn pow(&self, mut n: u64) -> Self {let mut t = Self::one();let mut s = *self;while n > 0 {if n & 1 == 1 {t *= s;}s *= s;n >>= 1;}t}pub fn inv(&self) -> Self {assert!(!self.is_zero());self.pow(T::modulo() as u64 - 2)}pub fn fact(n: usize) -> Self {(1..=n).fold(Self::one(), |s, a| s * Self::from(a))}pub fn perm(n: usize, k: usize) -> Self {if k > n {return Self::zero();}((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))}pub fn binom(n: usize, k: usize) -> Self {if k > n {return Self::zero();}let k = k.min(n - k);let mut nu = Self::one();let mut de = Self::one();for i in 0..k {nu *= Self::from(n - i);de *= Self::from(i + 1);}nu * de.inv()}}// ---------- end modint ----------// ---------- begin precalc ----------pub struct Precalc<T> {fact: Vec<ModInt<T>>,ifact: Vec<ModInt<T>>,inv: Vec<ModInt<T>>,}impl<T: Modulo> Precalc<T> {pub fn new(n: usize) -> Precalc<T> {let mut inv = vec![ModInt::one(); n + 1];let mut fact = vec![ModInt::one(); n + 1];let mut ifact = vec![ModInt::one(); n + 1];for i in 2..=n {fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);}ifact[n] = fact[n].inv();if n > 0 {inv[n] = ifact[n] * fact[n - 1];}for i in (1..n).rev() {ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);inv[i] = ifact[i] * fact[i - 1];}Precalc { fact, ifact, inv }}pub fn inv(&self, n: usize) -> ModInt<T> {assert!(n > 0);self.inv[n]}pub fn fact(&self, n: usize) -> ModInt<T> {self.fact[n]}pub fn ifact(&self, n: usize) -> ModInt<T> {self.ifact[n]}pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {if k > n {return ModInt::zero();}self.fact[n] * self.ifact[n - k]}pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {if k > n {return ModInt::zero();}self.fact[n] * self.ifact[k] * self.ifact[n - k]}}// ---------- end precalc ----------type M = ModInt<ConstantModulo<998_244_353>>;