結果

問題 No.2064 Smallest Sequence on Grid
ユーザー torisasami4
提出日時 2022-09-02 23:04:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,414 ms / 3,000 ms
コード長 6,642 bytes
コンパイル時間 2,682 ms
コンパイル使用メモリ 236,832 KB
最終ジャッジ日時 2025-02-07 01:45:42
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++)
cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty())
cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
long long extGCD(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind {
vector<int> data;
int num;
UnionFind(int sz) {
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k) {
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
int size(int k) {
return (-data[find(k)]);
}
bool same(int x, int y) {
return find(x) == find(y);
}
int operator[](int k) {
return find(k);
}
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {
}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
}
static int get_mod() {
return mod;
}
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() {
return *this += Mod_Int(1);
}
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() {
return *this -= Mod_Int(1);
}
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const {
return Mod_Int(-x);
}
Mod_Int operator+(const Mod_Int &p) const {
return Mod_Int(*this) += p;
}
Mod_Int operator-(const Mod_Int &p) const {
return Mod_Int(*this) -= p;
}
Mod_Int operator*(const Mod_Int &p) const {
return Mod_Int(*this) *= p;
}
Mod_Int operator/(const Mod_Int &p) const {
return Mod_Int(*this) /= p;
}
bool operator==(const Mod_Int &p) const {
return x == p.x;
}
bool operator!=(const Mod_Int &p) const {
return x != p.x;
}
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1)
ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
ll modinv2(ll a, ll mod) {
ll b = mod, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
ll divide_int(ll a, ll b) {
return (a >= 0 ? a / b : (a - b + 1) / b);
}
const int MOD = 1000000007;
// const int MOD = 998244353;
using mint = Mod_Int<MOD>;
mint mpow(mint x, ll n) {
bool rev = n < 0;
n = abs(n);
mint ans = 1;
while (n != 0) {
if (n & 1)
ans *= x;
x *= x;
n = n >> 1;
}
return (rev ? ans.inverse() : ans);
}
// ----- library -------
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int h, w;
cin >> h >> w;
vector<string> s(h);
rep(i, h) cin >> s[i];
string ans{s[0][0]};
vector<pair<int, int>> v{{0, 0}}, nv;
while (v.size()) {
nv.clear();
vector<set<pair<int, int>>> nvs(26);
for (auto [nx, ny] : v) {
if (nx + 1 < h)
nvs[s[nx + 1][ny] - 'a'].insert({nx + 1, ny});
if (ny + 1 < w)
nvs[s[nx][ny + 1] - 'a'].insert({nx, ny + 1});
}
rep(i, 26) {
if (nvs[i].size()) {
ans += (char)('a' + i);
for(auto e : nvs[i])
nv.eb(e);
break;
}
}
v = nv;
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0