結果

問題 No.2065 Sum of Min
ユーザー torisasami4torisasami4
提出日時 2022-09-02 23:17:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 140 ms / 2,000 ms
コード長 9,222 bytes
コンパイル時間 3,552 ms
コンパイル使用メモリ 238,576 KB
実行使用メモリ 11,404 KB
最終ジャッジ日時 2024-11-16 06:11:40
合計ジャッジ時間 8,271 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 106 ms
11,272 KB
testcase_05 AC 94 ms
11,148 KB
testcase_06 AC 116 ms
11,148 KB
testcase_07 AC 96 ms
11,400 KB
testcase_08 AC 126 ms
11,280 KB
testcase_09 AC 101 ms
11,272 KB
testcase_10 AC 108 ms
11,280 KB
testcase_11 AC 108 ms
11,272 KB
testcase_12 AC 139 ms
11,276 KB
testcase_13 AC 139 ms
11,400 KB
testcase_14 AC 137 ms
11,276 KB
testcase_15 AC 139 ms
11,272 KB
testcase_16 AC 138 ms
11,404 KB
testcase_17 AC 138 ms
11,276 KB
testcase_18 AC 140 ms
11,152 KB
testcase_19 AC 139 ms
11,276 KB
testcase_20 AC 138 ms
11,276 KB
testcase_21 AC 138 ms
11,276 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++)
        cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty())
        cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y)
            return (false);
        if (data[x] > data[y])
            swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0)
            return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) {
        return (-data[find(k)]);
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    int operator[](int k) {
        return find(k);
    }
};

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {
    }

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
    }

    static int get_mod() {
        return mod;
    }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() {
        return *this += Mod_Int(1);
    }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() {
        return *this -= Mod_Int(1);
    }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const {
        return Mod_Int(-x);
    }

    Mod_Int operator+(const Mod_Int &p) const {
        return Mod_Int(*this) += p;
    }

    Mod_Int operator-(const Mod_Int &p) const {
        return Mod_Int(*this) -= p;
    }

    Mod_Int operator*(const Mod_Int &p) const {
        return Mod_Int(*this) *= p;
    }

    Mod_Int operator/(const Mod_Int &p) const {
        return Mod_Int(*this) /= p;
    }

    bool operator==(const Mod_Int &p) const {
        return x == p.x;
    }

    bool operator!=(const Mod_Int &p) const {
        return x != p.x;
    }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1)
                ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1)
            ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

ll modinv2(ll a, ll mod) {
    ll b = mod, u = 1, v = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        u -= t * v;
        swap(u, v);
    }
    u %= mod;
    if (u < 0)
        u += mod;
    return u;
}

ll divide_int(ll a, ll b) {
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

const int MOD = 1000000007;
// const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1)
            ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
template <typename Monoid>
struct SegmentTree {
    using F = function<Monoid(Monoid, Monoid)>;

    int sz;
    vector<Monoid> seg;

    const F f;
    const Monoid M1;

    SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) {
        sz = 1;
        while (sz < n)
            sz <<= 1;
        seg.assign(2 * sz, M1);
    }

    void set(int k, const Monoid &x) {
        seg[k + sz] = x;
    }

    void build() {
        for (int k = sz - 1; k > 0; k--) {
            seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    void update(int k, const Monoid &x) {
        k += sz;
        seg[k] = x;
        while (k >>= 1) {
            seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    Monoid query(int a, int b) {
        Monoid L = M1, R = M1;
        for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if (a & 1)
                L = f(L, seg[a++]);
            if (b & 1)
                R = f(seg[--b], R);
        }
        return f(L, R);
    }

    Monoid operator[](const int &k) const {
        return seg[k + sz];
    }

    template <typename C>
    int find_subtree(int a, const C &check, Monoid &M, bool type) {
        while (a < sz) {
            Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
            if (check(nxt))
                a = 2 * a + type;
            else
                M = nxt, a = 2 * a + 1 - type;
        }
        return a - sz;
    }

    template <typename C>
    int find_first(int a, const C &check) {
        Monoid L = M1;
        if (a <= 0) {
            if (check(f(L, seg[1])))
                return find_subtree(1, check, L, false);
            return -1;
        }
        int b = sz;
        for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if (a & 1) {
                Monoid nxt = f(L, seg[a]);
                if (check(nxt))
                    return find_subtree(a, check, L, false);
                L = nxt;
                ++a;
            }
        }
        return -1;
    }

    template <typename C>
    int find_last(int b, const C &check) {
        Monoid R = M1;
        if (b >= sz) {
            if (check(f(seg[1], R)))
                return find_subtree(1, check, R, true);
            return -1;
        }
        int a = sz;
        for (b += sz; a < b; a >>= 1, b >>= 1) {
            if (b & 1) {
                Monoid nxt = f(seg[--b], R);
                if (check(nxt))
                    return find_subtree(b, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }
};
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, q;
    cin >> n >> q;
    vector<int> a(n);
    rep(i, n) cin >> a[i];
    vector<int> l(q), r(q), x(q);
    rep(i, q) cin >> l[i] >> r[i] >> x[i], l[i]--;
    SegmentTree<ll> seg(n, [](ll a, ll b) { return a + b; }, 0), seg1 = seg;
    seg.build(), seg1.build();
    vector<pair<int, int>> ev;
    rep(i, n) ev.eb(a[i], -(i + 1));
    rep(i, q) ev.eb(x[i], i);
    vector<ll> ans(q);
    sort(all(ev));
    for (auto [val, idx] : ev) {
        if (idx < 0) {
            idx = -(idx + 1);
            seg.update(idx, val), seg1.update(idx, 1);
        } else
            ans[idx] = seg.query(l[idx], r[idx]) + x[idx] * (r[idx] - l[idx] - seg1.query(l[idx], r[idx]));
    }
    rep(i, q) cout << ans[i] << '\n';
}
0