結果
問題 | No.1105 Many Triplets |
ユーザー | au7777 |
提出日時 | 2022-09-03 14:27:34 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 5,486 bytes |
コンパイル時間 | 4,491 ms |
コンパイル使用メモリ | 243,804 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-17 04:22:11 |
合計ジャッジ時間 | 5,596 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 2 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,816 KB |
testcase_22 | AC | 2 ms
6,820 KB |
testcase_23 | AC | 2 ms
6,820 KB |
testcase_24 | AC | 2 ms
6,816 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> typedef long long int ll; using namespace std; using namespace atcoder; typedef pair<ll, ll> P; #define loop(i,n) for(int i=0;i<n;i++) template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>; // const ll MOD = 998244353; // using mint = modint998244353; const ll MOD = 1000000007; using mint = modint1000000007; const int MAX = 2000005; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll gcd(ll x, ll y) { if (y == 0) return x; else if (y > x) { return gcd (y, x); } else return gcd(x % y, y); } ll lcm(ll x, ll y) { return x / gcd(x, y) * y; } ll my_sqrt(ll x) { ll m = 0; ll M = 3000000001; while (M - m > 1) { ll now = (M + m) / 2; if (now * now <= x) { m = now; } else { M = now; } } return m; } ll keta(ll n, ll hou) { ll ret = 0; while (n) { n /= hou; ret++; } return ret; } ll ceil(ll n, ll m) { // n > 0, m > 0 ll ret = n / m; if (n % m) ret++; return ret; } ll pow_ll(ll x, ll n) { if (n == 0) return 1; if (n % 2) { return pow_ll(x, n - 1) * x; } else { ll tmp = pow_ll(x, n / 2); return tmp * tmp; } } vector<ll> compress(vector<ll> v) { // [3 5 5 6 1 1 10 1] -> [1 2 2 3 0 0 4 0] vector<ll> u = v; sort(u.begin(), u.end()); u.erase(unique(u.begin(),u.end()),u.end()); map<ll, ll> mp; for (int i = 0; i < u.size(); i++) { mp[u[i]] = i; } for (int i = 0; i < v.size(); i++) { v[i] = mp[v[i]]; } return v; } template <typename T, int H, int W> struct Matrix { using Array = array<array<T, W>, H>; Array A; Matrix() : A() { for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) (*this)[i][j] = T(); } int height() const { return H; } int width() const { return W; } inline const array<T, W> &operator[](int k) const { return A[k]; } inline array<T, W> &operator[](int k) { return A[k]; } static Matrix I() { assert(H == W); Matrix mat; for (int i = 0; i < H; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) A[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) A[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { assert(H == W); Matrix C; for (int i = 0; i < H; i++) for (int k = 0; k < H; k++) for (int j = 0; j < H; j++) C[i][j] += A[i][k] * B[k][j]; A.swap(C.A); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { for (int i = 0; i < H; i++) { os << "["; for (int j = 0; j < W; j++) { os << p[i][j] << (j + 1 == W ? "]\n" : ","); } } return (os); } T determinant(int n = -1) { if (n == -1) n = H; Matrix B(*this); T ret = 1; for (int i = 0; i < n; i++) { int idx = -1; for (int j = i; j < n; j++) { if (B[j][i] != 0) { idx = j; break; } } if (idx == -1) return 0; if (i != idx) { ret *= T(-1); swap(B[i], B[idx]); } ret *= B[i][i]; T inv = T(1) / B[i][i]; for (int j = 0; j < n; j++) { B[i][j] *= inv; } for (int j = i + 1; j < n; j++) { T a = B[j][i]; if (a == 0) continue; for (int k = i; k < n; k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; Matrix<mint, 2, 2> f(Matrix<mint, 2, 2> m1, ll n) { Matrix<mint, 2, 2> ret; ret[0][0] = 1; ret[0][1] = 0; ret[1][0] = 0; ret[1][1] = 1; if (n == 0) { return ret; } else if (n % 2) { ret = f(m1, n - 1); ret *= m1; return ret; } else { ret = f(m1, n / 2); ret *= ret; return ret; } } int main() { ll n; cin >> n; ll a1, b1, c1; cin >> a1 >> b1 >> c1; ll a2, b2, c2; a2 = a1 - b1; b2 = b1 - c1; c2 = c1 - a1; Matrix<mint, 2, 2> mat; mat[0][0] = 1; mat[0][1] = -1; mat[1][0] = 1; mat[1][1] = 2; Matrix<mint, 2, 2> A = f(mat, n - 2); mint a = a2 * A[0][0] + b2 * A[0][1]; mint b = a2 * A[1][0] + b2 * A[1][1]; mint c = -a - b; cout << a.val() << ' ' << b.val() << ' ' << c.val() << endl; return 0; }