結果

問題 No.1105 Many Triplets
ユーザー au7777au7777
提出日時 2022-09-03 14:27:34
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,486 bytes
コンパイル時間 4,491 ms
コンパイル使用メモリ 243,804 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-17 04:22:11
合計ジャッジ時間 5,596 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 1 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 2 ms
6,816 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 2 ms
6,820 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 2 ms
6,816 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 2 ms
6,816 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 2 ms
6,820 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 2 ms
6,816 KB
testcase_27 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>
typedef long long int ll;
using namespace std;
using namespace atcoder;
typedef pair<ll, ll> P;
#define loop(i,n) for(int i=0;i<n;i++)
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
// const ll MOD = 998244353;
// using mint = modint998244353;
const ll MOD = 1000000007;
using mint = modint1000000007;
const int MAX = 2000005;
long long fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
    fac[0] = fac[1] = 1;
    finv[0] = finv[1] = 1;
    inv[1] = 1;
    for (int i = 2; i < MAX; i++){
        fac[i] = fac[i - 1] * i % MOD;
        inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
        finv[i] = finv[i - 1] * inv[i] % MOD;
    }
}
long long COM(int n, int k){
    if (n < k) return 0;
    if (n < 0 || k < 0) return 0;
    return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll gcd(ll x, ll y) {
   if (y == 0) return x;
   else if (y > x) {
       return gcd (y, x); 
   }
   else return gcd(x % y, y);
}
ll lcm(ll x, ll y) {
   return x / gcd(x, y) * y;
}
ll my_sqrt(ll x) {
    ll m = 0;
    ll M = 3000000001;
    while (M - m > 1) {
        ll now = (M + m) / 2;
        if (now * now <= x) {
            m = now;
        }
        else {
            M = now;
        }
    }
    return m;
}
ll keta(ll n, ll hou) {
    ll ret = 0;
    while (n) {
        n /= hou;
        ret++;
    }
    return ret;
}
ll ceil(ll n, ll m) {
    // n > 0, m > 0
    ll ret = n / m;
    if (n % m) ret++;
    return ret;
}
ll pow_ll(ll x, ll n) {
    if (n == 0) return 1;
    if (n % 2) {
        return pow_ll(x, n - 1) * x;
    }
    else {
        ll tmp = pow_ll(x, n / 2);
        return tmp * tmp;
    }
}
vector<ll> compress(vector<ll> v) {
    // [3 5 5 6 1 1 10 1] -> [1 2 2 3 0 0 4 0] 
    vector<ll> u = v;
    sort(u.begin(), u.end());
    u.erase(unique(u.begin(),u.end()),u.end());
    map<ll, ll> mp;
    for (int i = 0; i < u.size(); i++) {
        mp[u[i]] = i;
    }
    for (int i = 0; i < v.size(); i++) {
        v[i] = mp[v[i]];
    }
    return v;
}

template <typename T, int H, int W>
struct Matrix {
  using Array = array<array<T, W>, H>;
  Array A;
 
  Matrix() : A() {
    for (int i = 0; i < H; i++)
      for (int j = 0; j < W; j++) (*this)[i][j] = T();
  }
 
  int height() const { return H; }
 
  int width() const { return W; }
 
  inline const array<T, W> &operator[](int k) const { return A[k]; }
 
  inline array<T, W> &operator[](int k) { return A[k]; }
 
  static Matrix I() {
    assert(H == W);
    Matrix mat;
    for (int i = 0; i < H; i++) mat[i][i] = 1;
    return (mat);
  }
 
  Matrix &operator+=(const Matrix &B) {
    for (int i = 0; i < H; i++)
      for (int j = 0; j < W; j++) A[i][j] += B[i][j];
    return (*this);
  }
 
  Matrix &operator-=(const Matrix &B) {
    for (int i = 0; i < H; i++)
      for (int j = 0; j < W; j++) A[i][j] -= B[i][j];
    return (*this);
  }
 
  Matrix &operator*=(const Matrix &B) {
    assert(H == W);
    Matrix C;
    for (int i = 0; i < H; i++)
      for (int k = 0; k < H; k++)
        for (int j = 0; j < H; j++) C[i][j] += A[i][k] * B[k][j];
    A.swap(C.A);
    return (*this);
  }
 
  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I();
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }
 
  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
 
  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
 
  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
 
  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
 
  friend ostream &operator<<(ostream &os, Matrix &p) {
    for (int i = 0; i < H; i++) {
      os << "[";
      for (int j = 0; j < W; j++) {
        os << p[i][j] << (j + 1 == W ? "]\n" : ",");
      }
    }
    return (os);
  }
 
  T determinant(int n = -1) {
    if (n == -1) n = H;
    Matrix B(*this);
    T ret = 1;
    for (int i = 0; i < n; i++) {
      int idx = -1;
      for (int j = i; j < n; j++) {
        if (B[j][i] != 0) {
          idx = j;
          break;
        }
      }
      if (idx == -1) return 0;
      if (i != idx) {
        ret *= T(-1);
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T inv = T(1) / B[i][i];
      for (int j = 0; j < n; j++) {
        B[i][j] *= inv;
      }
      for (int j = i + 1; j < n; j++) {
        T a = B[j][i];
        if (a == 0) continue;
        for (int k = i; k < n; k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

Matrix<mint, 2, 2> f(Matrix<mint, 2, 2> m1, ll n) {
    Matrix<mint, 2, 2> ret;
    ret[0][0] = 1;
    ret[0][1] = 0;
    ret[1][0] = 0;
    ret[1][1] = 1;
    if (n == 0) {
        return ret;
    }
    else if (n % 2) {
        ret = f(m1, n - 1);
        ret *= m1;
        return ret;
    }
    else {
        ret = f(m1, n / 2);
        ret *= ret;
        return ret;
    }
}

int main() {
    ll n;
    cin >> n;
    ll a1, b1, c1;
    cin >> a1 >> b1 >> c1;
    ll a2, b2, c2;
    a2 = a1 - b1;
    b2 = b1 - c1;
    c2 = c1 - a1;
    Matrix<mint, 2, 2> mat;
    mat[0][0] = 1;
    mat[0][1] = -1;
    mat[1][0] = 1;
    mat[1][1] = 2;
    Matrix<mint, 2, 2> A = f(mat, n - 2); 
    mint a = a2 * A[0][0] + b2 * A[0][1];
    mint b = a2 * A[1][0] + b2 * A[1][1];
    mint c = -a - b;
    cout << a.val() << ' ' << b.val() << ' ' << c.val() << endl;
    return 0;
}
0