結果

問題 No.440 2次元チワワ問題
ユーザー fumofumofuni
提出日時 2022-09-03 15:25:31
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 4,833 bytes
コンパイル時間 3,330 ms
コンパイル使用メモリ 223,540 KB
最終ジャッジ日時 2025-02-07 02:20:52
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 21 TLE * 5
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={0,1,0,-1,1,1,-1,-1,0};
const ll dx[9]={1,0,-1,0,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
//0-indexed,2
template <class T>
struct SegTree {
private:
int n;//
vector<T> data;// vector
T def; //
function<T(T, T)> operation; // 使
function<T(T, T)> change;// 使
T find(int a, int b) {
T val_left = def, val_right = def;
for (a += (n - 1), b += (n - 1); a < b; a >>= 1, b >>= 1)
{
if ((a & 1) == 0){
val_left = operation(val_left, data[a]);
}
if ((b & 1) == 0){
val_right = operation(data[--b],val_right);
}
}
return operation(val_left, val_right);
}
public:
// _n:, _def:, _operation:,
// _change:
SegTree(size_t _n, T _def, function<T(T, T)> _operation,
function<T(T, T)> _change=[](T a,T b){return b;})
: def(_def), operation(_operation), change(_change) {
n = 1;
while (n < _n) {
n *= 2;
}
data = vector<T>(2 * n - 1, def);
}
void set(int i, T x) { data[i + n - 1] = x; }
void build() {
for (int k=n-2;k>=0;k--) data[k] = operation(data[2*k+1],data[2*k+2]);
}
// i(0-indexed)x
void update(int i, T x) {
i += n - 1;
data[i] = change(data[i], x);
while (i > 0) {
i = (i - 1) / 2;
data[i] = operation(data[i * 2 + 1], data[i * 2 + 2]);
}
}
T all_prod(){
return data[0];
}
// [a, b)
T query(int a, int b) {
//return _query(a, b, 0, 0, n);
return find(a,b);
}
//
T operator[](int i) {
return data[i + n - 1];
}
};
int main(){
vvl ex(4,vl(4));rep(i,4)ex[i][i]=1;
vvl C=ex;C[0][1]++;
vvl W=ex;W[1][2]++;W[2][3]++;
vvl invC=ex;invC[0][1]=-1;
vvl invW=ex;invW[1][2]--;invW[2][3]--;invW[1][3]++;
auto fx=[](vvl a,vvl b){
vvl mat(4,vl(4));
rep(i,4){
rep(k,4){
rep(j,4){
mat[i][j]+=a[i][k]*b[k][j];
}
}
}
return mat;
};
/*ll h,w;cin >> h >> w;
vector<string> g(h);
rep(i,h){
rep(j,w){
if(j&1)g[i]+='c';
else g[i]+='w';
}
}
ll q;cin >> q;
vvl pls(q,vl(4));
rep(i,q){
rep(j,4){
if(j>=2)pls[i][j]=w-1;
else pls[i][j]=0;
}
}*/
ll h,w;cin >> h >> w;
vector<string> g(h);rep(i,h)cin >> g[i];
ll q;cin >> q;
vvl pls(q,vl(4));
rep(i,q){
rep(j,4)cin >>pls[i][j],pls[i][j]--;
}
vl ans(q);
auto calc=[&](){
rep(i,h){
vector<vvl> dp(w+1);
dp[0]=ex;
rep(j,w){
if(g[i][j]=='c')dp[j+1]=fx(dp[j],C);
else dp[j+1]=fx(dp[j],W);
}
vector<vvl> ndp(w+1);
ndp[0]=ex;
rep(j,w){
if(g[i][j]=='c')ndp[j+1]=fx(invC,ndp[j]);
else ndp[j+1]=fx(invW,ndp[j]);
}
rep(j,q){
if(pls[j][0]<=i&&i<=pls[j][2]){
ans[j]+=fx(ndp[pls[j][1]],dp[pls[j][3]+1])[0][3];
}
}
}
};
calc();
rep(i,h)rev(all(g[i]));
rep(i,q){
tie(pls[i][1],pls[i][3])=make_pair(w-pls[i][3]-1,w-pls[i][1]-1);
}
calc();
{
vector<string> ng(w);
rep(i,h)rep(j,w){
ng[j]+=g[i][j];
}
swap(h,w);swap(g,ng);
rep(i,q){
swap(pls[i][0],pls[i][1]);
swap(pls[i][2],pls[i][3]);
}
}
calc();
rep(i,h)rev(all(g[i]));
rep(i,q){
tie(pls[i][1],pls[i][3])=make_pair(w-pls[i][3]-1,w-pls[i][1]-1);
}
calc();
rep(i,q)cout << ans[i] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0