結果
| 問題 |
No.2107 Entangled LIS
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2022-09-04 12:22:42 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 13,242 bytes |
| コンパイル時間 | 2,484 ms |
| コンパイル使用メモリ | 195,300 KB |
| 実行使用メモリ | 136,876 KB |
| 最終ジャッジ日時 | 2024-11-18 14:52:36 |
| 合計ジャッジ時間 | 7,803 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | WA * 10 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
// #include <atcoder/scc>
// Directed graph library to find strongly connected components (強連結成分分解)
// 0-indexed directed graph
// Complexity: O(V + E)
struct DirectedGraphSCC {
int V; // # of Vertices
std::vector<std::vector<int>> to, from;
std::vector<int> used; // Only true/false
std::vector<int> vs;
std::vector<int> cmp;
int scc_num = -1;
DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}
void _dfs(int v) {
used[v] = true;
for (auto t : to[v])
if (!used[t]) _dfs(t);
vs.push_back(v);
}
void _rdfs(int v, int k) {
used[v] = true;
cmp[v] = k;
for (auto t : from[v])
if (!used[t]) _rdfs(t, k);
}
void add_edge(int from_, int to_) {
assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);
to[from_].push_back(to_);
from[to_].push_back(from_);
}
// Detect strongly connected components and return # of them.
// Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)
int FindStronglyConnectedComponents() {
used.assign(V, false);
vs.clear();
for (int v = 0; v < V; v++)
if (!used[v]) _dfs(v);
used.assign(V, false);
scc_num = 0;
for (int i = (int)vs.size() - 1; i >= 0; i--)
if (!used[vs[i]]) _rdfs(vs[i], scc_num++);
return scc_num;
}
// Find and output the vertices that form a closed cycle.
// output: {v_1, ..., v_C}, where C is the length of cycle,
// {} if there's NO cycle (graph is DAG)
int _c, _init;
std::vector<int> _ret_cycle;
bool _dfs_detectcycle(int now, bool b0) {
if (now == _init and b0) return true;
for (auto nxt : to[now])
if (cmp[nxt] == _c and !used[nxt]) {
_ret_cycle.emplace_back(nxt), used[nxt] = 1;
if (_dfs_detectcycle(nxt, true)) return true;
_ret_cycle.pop_back();
}
return false;
}
std::vector<int> DetectCycle() {
int ns = FindStronglyConnectedComponents();
if (ns == V) return {};
std::vector<int> cnt(ns);
for (auto x : cmp) cnt[x]++;
_c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();
_init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();
used.assign(V, false);
_ret_cycle.clear();
_dfs_detectcycle(_init, false);
return _ret_cycle;
}
// After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all
// vertices belonging to the same component(The resultant graph is DAG).
DirectedGraphSCC GenerateTopologicalGraph() {
DirectedGraphSCC newgraph(scc_num);
for (int s = 0; s < V; s++)
for (auto t : to[s]) {
if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);
}
return newgraph;
}
};
pair<vector<int>, vector<int>> build(int N, int A, int B, const string &S) {
if (A < B) {
string T = S;
for (auto &c : T) {
if (c == 'a') {
c = 'b';
} else {
c = 'a';
}
}
auto [f1, f2] = build(N, B, A, T);
return {f2, f1};
}
if (A == 1 and B == 1) {
vector<int> ret1, ret2;
REP(i, N) {
int g = N * 2 - i * 2;
int s = N * 2 - i * 2 - 1;
if (S[i] == 'a') {
ret1.push_back(g);
ret2.push_back(s);
} else {
ret1.push_back(s);
ret2.push_back(g);
}
}
return {ret1, ret2};
}
DirectedGraphSCC graph(N * 2);
vector<vector<int>> dag_to(N * 2);
vector<unordered_set<int>> dag_from(N * 2);
auto add_edge = [&](int s, int t) {
graph.add_edge(s, t);
dag_from.at(t).insert(s);
dag_to.at(s).push_back(t);
};
REP(i, N) {
if (S[i] == 'a') {
add_edge(N + i, i);
} else {
add_edge(i, N + i);
}
}
int rema = A - 1, remb = B - 1;
vector<int> s1(N - 1), s2(N - 1);
REP(i, N - 1) {
if (S[i] == 'a' and S[i + 1] == 'b') {
if (remb) {
--remb;
s2[i] = 1;
add_edge(N + i, N + i + 1);
}
}
if (S[i] == 'b' and S[i + 1] == 'a') {
if (rema) {
--rema;
s1.at(i) = 1;
add_edge(i, i + 1);
}
}
}
REP(i, N - 1) {
if (s1.at(i)) {
if (remb) {
--remb;
s2.at(i) = 1;
add_edge(N + i, N + i + 1);
}
} else if (s2.at(i)) {
if (rema) {
--rema;
s1.at(i) = 1;
add_edge(i, i + 1);
}
} else {
if (rema) {
if (S.at(i) == 'a' and S.at(i + 1) == 'b') {
} else {
--rema;
s1.at(i) = 1;
add_edge(i, i + 1);
}
}
if (remb) {
if (S.at(i) == 'b' and S.at(i + 1) == 'a') {
} else {
--remb;
s2.at(i) = 1;
add_edge(N + i, N + i + 1);
}
}
}
}
if (rema or remb) return {{}, {}};
vector<int> ret1(N), ret2(N);
int current = 1;
priority_queue<int> pq;
REP(i, N * 2) {
if (dag_from.at(i).empty()) pq.emplace(i);
}
while (pq.size()) {
int now = pq.top();
pq.pop();
if (now < N) {
ret1.at(now) = current;
} else {
ret2.at(now - N) = current;
}
++current;
for (auto nxt : dag_to.at(now)) {
dag_from.at(nxt).erase(now);
if (dag_from.at(nxt).empty()) pq.push(nxt);
}
}
return {ret1, ret2};
}
int main() {
int T;
cin >> T;
while (T--) {
int N, A, B;
string S;
cin >> N >> A >> B >> S;
auto [f1, f2] = build(N, A, B, S);
if (f1.size()) {
cout << "Yes\n";
for (auto x : f1) cout << x << ' ';
cout << '\n';
for (auto x : f2) cout << x << ' ';
cout << '\n';
} else {
cout << "No\n";
}
}
}
hitonanode