結果

問題 No.2066 Simple Math !
ユーザー tokusakuraitokusakurai
提出日時 2022-09-04 13:31:12
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 275 ms / 2,000 ms
コード長 6,719 bytes
コンパイル時間 2,210 ms
コンパイル使用メモリ 207,500 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-18 17:21:00
合計ジャッジ時間 10,054 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 72 ms
6,816 KB
testcase_02 AC 94 ms
6,820 KB
testcase_03 AC 32 ms
6,816 KB
testcase_04 AC 274 ms
6,816 KB
testcase_05 AC 273 ms
6,816 KB
testcase_06 AC 273 ms
6,820 KB
testcase_07 AC 275 ms
6,820 KB
testcase_08 AC 267 ms
6,820 KB
testcase_09 AC 274 ms
6,824 KB
testcase_10 AC 273 ms
6,816 KB
testcase_11 AC 271 ms
6,820 KB
testcase_12 AC 267 ms
6,816 KB
testcase_13 AC 275 ms
6,820 KB
testcase_14 AC 244 ms
6,820 KB
testcase_15 AC 242 ms
6,816 KB
testcase_16 AC 240 ms
6,820 KB
testcase_17 AC 246 ms
6,816 KB
testcase_18 AC 248 ms
6,820 KB
testcase_19 AC 157 ms
6,820 KB
testcase_20 AC 154 ms
6,816 KB
testcase_21 AC 163 ms
6,816 KB
testcase_22 AC 158 ms
6,820 KB
testcase_23 AC 159 ms
6,820 KB
testcase_24 AC 236 ms
6,820 KB
testcase_25 AC 234 ms
6,816 KB
testcase_26 AC 230 ms
6,816 KB
testcase_27 AC 227 ms
6,824 KB
testcase_28 AC 229 ms
6,820 KB
testcase_29 AC 58 ms
6,816 KB
testcase_30 AC 32 ms
6,820 KB
testcase_31 AC 55 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <typename T>
T _gcd(const T &a, const T &b) {
if (b == 0) return a;
return _gcd(b, a % b);
}
template <typename T>
T _lcm(const T &a, const T &b) {
return a * (b / _gcd(a, b));
}
// |x| |y| max(a,b)
template <typename T>
T extgcd(const T &a, const T &b, T &x, T &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
T g = extgcd(b, a % b, y, x);
y -= (a / b) * x;
return g;
}
int mod(const long long &a, const int &m) {
int ret = a % m;
return ret + (ret < 0 ? m : 0);
}
// a m
int modinv(const int &a, const int &m) {
int x, y;
extgcd(a, m, x, y);
return mod(x, m);
}
// Σ[0<=i<n] floor((ai+b)/m)
template <typename T>
T floor_sum(const T &n, const T &m, T a, T b) {
T ret = (a / m) * (n * (n - 1) / 2) + (b / m) * n;
a %= m, b %= m;
T y = (a * n + b) / m;
if (y == 0) return ret;
ret += floor_sum(y, a, m, a * n - (m * y - b));
return ret;
}
// min{ai+b mod m | 0<=i<n} p, q
template <typename T>
T linear_mod_min(T n, const T &m, T a, T b, bool is_min = true, T p = 1, T q = 1) {
if (a == 0) return b;
if (is_min) {
if (b >= a) {
T t = (m - b + a - 1) / a;
T c = (t - 1) * p + q;
if (n <= c) return b;
n -= c;
b += a * t - m;
}
b = a - 1 - b;
} else {
if (b < m - a) {
T t = (m - b - 1) / a;
T c = t * p;
if (n <= c) return a * ((n - 1) / p) + b;
n -= c;
b += a * t;
}
b = m - 1 - b;
}
T d = m / a;
T c = linear_mod_min(n, a, m % a, b, !is_min, (d - 1) * p + q, d * p + q);
return is_min ? a - 1 - c : m - 1 - c;
}
template <typename T>
pair<T, T> Chinese_remainder_theorem(const T &a1, const T &m1, const T &a2, const T &m2) {
T x, y, g = extgcd(m1, m2, x, y);
if ((a2 - a1) % g != 0) return make_pair(0, -1);
T m = m1 * (m2 / g);
T tmp = mod(x * ((a2 - a1) / g), m2 / g);
T a = (m1 * tmp + a1) % m;
return make_pair(a, m);
}
// m
bool prepare_Garner(vector<int> &a, vector<int> &m) {
int n = a.size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
int g = gcd(m[i], m[j]);
if ((a[i] - a[j]) % g != 0) return false;
m[i] /= g, m[j] /= g;
int gi = gcd(m[i], g), gj = g / gi;
do {
g = gcd(gi, gj);
gi *= g, gj /= g;
} while (g > 1);
m[i] *= gi, m[j] *= gj;
}
}
return true;
}
// m
int Garner(vector<int> a, vector<int> m, const int &M) {
m.push_back(M);
vector<long long> coeffs(m.size(), 1);
vector<long long> constants(m.size(), 0);
for (int k = 0; k < (int)a.size(); k++) {
long long x = a[k] - constants[k], y = modinv(coeffs[k], m[k]);
long long t = mod(x * y, m[k]);
for (int i = k + 1; i < (int)m.size(); i++) {
constants[i] += t * coeffs[i], constants[i] %= m[i];
coeffs[i] *= m[k], coeffs[i] %= m[i];
}
}
return constants.back();
}
int main() {
int T;
cin >> T;
while (T--) {
ll a, b, K;
cin >> a >> b >> K;
K++;
ll g = gcd(a, b);
a /= g, b /= g;
ll L = 0, R = INF; // (L,R]
while (R - L > 1) {
ll M = (L + R) / 2;
ll t = (M + b) / a;
chmin(t, b - 1);
ll tmp = floor_sum(t + 1, b, a, M + b - t * a);
(tmp >= K ? R : L) = M;
}
cout << R * g << '\n';
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0