結果
問題 | No.1417 100の倍数かつ正整数(2) |
ユーザー | atcoder8 |
提出日時 | 2022-09-04 19:57:25 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 5 ms / 3,000 ms |
コード長 | 17,985 bytes |
コンパイル時間 | 14,564 ms |
コンパイル使用メモリ | 379,592 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-19 02:39:13 |
合計ジャッジ時間 | 15,936 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 1 ms
5,248 KB |
testcase_10 | AC | 1 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 1 ms
5,248 KB |
testcase_15 | AC | 1 ms
5,248 KB |
testcase_16 | AC | 1 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 1 ms
5,248 KB |
testcase_21 | AC | 1 ms
5,248 KB |
testcase_22 | AC | 1 ms
5,248 KB |
testcase_23 | AC | 1 ms
5,248 KB |
testcase_24 | AC | 1 ms
5,248 KB |
testcase_25 | AC | 1 ms
5,248 KB |
testcase_26 | AC | 1 ms
5,248 KB |
testcase_27 | AC | 1 ms
5,248 KB |
testcase_28 | AC | 1 ms
5,248 KB |
testcase_29 | AC | 1 ms
5,248 KB |
testcase_30 | AC | 1 ms
5,248 KB |
testcase_31 | AC | 1 ms
5,248 KB |
testcase_32 | AC | 1 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 4 ms
5,248 KB |
testcase_35 | AC | 4 ms
5,248 KB |
testcase_36 | AC | 4 ms
5,248 KB |
testcase_37 | AC | 5 ms
5,248 KB |
testcase_38 | AC | 3 ms
5,248 KB |
ソースコード
use atcoder8_library::modint::ModInt1000000007; type Mint = ModInt1000000007; fn main() { let cc: Vec<char> = { let mut line = String::new(); std::io::stdin().read_line(&mut line).unwrap(); line.trim().chars().collect() }; let digits: Vec<usize> = cc .iter() .map(|&c| c.to_digit(10).unwrap() as usize) .collect(); let mut equal = [[Mint::new(0); 3]; 3]; let mut less = [[Mint::new(0); 3]; 3]; let divisible_cnt_by_2 = divisible_count(digits[0], 2); let divisible_cnt_by_5 = divisible_count(digits[0], 5); equal[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1; for i in 1..digits[0] { let divisible_cnt_by_2 = divisible_count(i, 2); let divisible_cnt_by_5 = divisible_count(i, 5); less[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1; } for &d in digits.iter().skip(1) { let mut next_equal = [[Mint::new(0); 3]; 3]; let mut next_less = [[Mint::new(0); 3]; 3]; if d > 0 { let divisible_cnt_by_2 = divisible_count(d, 2); let divisible_cnt_by_5 = divisible_count(d, 5); for two_cnt in 0..3 { let next_two_cnt = (two_cnt + divisible_cnt_by_2).min(2); for five_cnt in 0..3 { let next_five_cnt = (five_cnt + divisible_cnt_by_5).min(2); next_equal[next_two_cnt][next_five_cnt] += equal[two_cnt][five_cnt]; } } } for i in 1..10 { let divisible_cnt_by_2 = divisible_count(i, 2); let divisible_cnt_by_5 = divisible_count(i, 5); next_less[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1; for two_cnt in 0..3 { let next_two_cnt = (two_cnt + divisible_cnt_by_2).min(2); for five_cnt in 0..3 { let next_five_cnt = (five_cnt + divisible_cnt_by_5).min(2); next_less[next_two_cnt][next_five_cnt] += less[two_cnt][five_cnt]; if i < d { next_less[next_two_cnt][next_five_cnt] += equal[two_cnt][five_cnt]; } } } } equal = next_equal; less = next_less; } let ans = (equal[2][2] + less[2][2]).get_val(); println!("{}", ans); } /// Counts how many times `a` is divisible by `b`. /// If `a` is `0`, `1` is returned. fn divisible_count(a: usize, b: usize) -> usize { assert_ne!(b, 0, "`b` must be at lease 1."); if a == 0 { return 0; } let mut cnt = 0; let mut t = a; while t % b == 0 { t /= b; cnt += 1; } cnt } pub mod atcoder8_library { pub mod modint { use std::ops::{ Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, ShrAssign, Sub, SubAssign, }; pub trait RemEuclidU32 { fn rem_euclid_u32(self, modulus: u32) -> u32; } pub fn modinv(a: u32, m: u32) -> u32 { assert!(m >= 2); let (mut a, mut b, mut s, mut t) = (a as i64, m as i64, 1, 0); while b != 0 { let q = a / b; a -= q * b; std::mem::swap(&mut a, &mut b); s -= q * t; std::mem::swap(&mut s, &mut t); } assert_eq!( a.abs(), 1, "The inverse does not exist. gcd(a, m) = {}", a.abs() ); s %= m as i64; if s < 0 { s += m as i64; } s as u32 } // 32bit以下の符号付き整数型に対してrem_euclid_u32を実装するマクロ macro_rules! impl_rem_euclid_u32_for_small_signed { ($($small_signed_type:tt),*) => { $( impl RemEuclidU32 for $small_signed_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = (self as i32) % (modulus as i32); if ret >= 0 { ret as u32 } else { (ret + modulus as i32) as u32 } } } )* }; } // 64bitの符号付き整数型(isizeを含む)に対してrem_euclid_u32を実装するマクロ macro_rules! impl_rem_euclid_u32_for_large_signed { ($($large_signed_type:tt),*) => { $( impl RemEuclidU32 for $large_signed_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = (self as i64) % (modulus as i64); if ret >= 0 { ret as u32 } else { (ret + modulus as i64) as u32 } } } )* }; } // 32bit以上の符号無し整数型に対してrem_euclid_u32を実装するマクロ macro_rules! impl_rem_euclid_u32_for_small_unsigned { ($($small_unsigned_type:tt),*) => { $( impl RemEuclidU32 for $small_unsigned_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { self as u32 % modulus } } )* }; } // 64bit以上の符号無し整数型(usizeを含む)に対してrem_euclid_u32を実装するマクロ macro_rules! impl_rem_euclid_u32_for_large_unsigned { ($($large_unsigned_type:tt),*) => { $( impl RemEuclidU32 for $large_unsigned_type { fn rem_euclid_u32(self, modulus: u32) -> u32 { (self % modulus as $large_unsigned_type) as u32 } } )* }; } // 32bit以下の符号付き整数型に対してrem_euclid_u32を実装 impl_rem_euclid_u32_for_small_signed!(i8, i16, i32); // 64bitの符号付き整数型(isizeを含む)に対してrem_euclid_u32を実装 impl_rem_euclid_u32_for_large_signed!(i64, isize); // 32bit以上の符号無し整数型に対してrem_euclid_u32を実装 impl_rem_euclid_u32_for_small_unsigned!(u8, u16, u32); // 64bit以上の符号無し整数型(usizeを含む)に対してrem_euclid_u32を実装 impl_rem_euclid_u32_for_large_unsigned!(u64, u128, usize); // 128bitの符号付き整数型に対してrem_euclid_u32を実装 impl RemEuclidU32 for i128 { fn rem_euclid_u32(self, modulus: u32) -> u32 { let ret = self % (modulus as i128); if ret >= 0 { ret as u32 } else { (ret + modulus as i128) as u32 } } } pub trait Pow<T: Copy + ShrAssign> { fn pow(self, n: T) -> Self; } #[macro_export] macro_rules! generate_modint { // 型名と法を指定してModIntを生成 ($modint_type:tt, $modulus:literal) => { #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct $modint_type { val: u32, } impl $modint_type { const MOD: u32 = $modulus; } impl $modint_type { pub fn new<T: RemEuclidU32>(val: T) -> Self { Self { val: val.rem_euclid_u32($modulus), } } pub fn raw(val: u32) -> Self { Self { val } } pub fn get_val(&self) -> u32 { self.val } pub fn inv(&self) -> Self { Self::new(modinv(self.val, $modulus)) } } impl<T: RemEuclidU32> From<T> for $modint_type { fn from(val: T) -> Self { Self::new(val) } } impl Add for $modint_type { type Output = Self; fn add(self, rhs: Self) -> Self::Output { Self::new(self.val + rhs.val) } } impl Sub for $modint_type { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { Self::new(self.val + $modulus - rhs.val) } } impl Mul for $modint_type { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { Self::new(self.val as u64 * rhs.val as u64) } } impl Div for $modint_type { type Output = Self; fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl AddAssign for $modint_type { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl SubAssign for $modint_type { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl MulAssign for $modint_type { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl DivAssign for $modint_type { fn div_assign(&mut self, other: Self) { *self = *self / other; } } impl Neg for $modint_type { type Output = Self; fn neg(self) -> Self::Output { Self::new(Self::MOD - self.val) } } // 各整数型に対して$modint_typeとの二項演算を定義 impl_ops!( $modint_type, i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize ); // 符号無し整数型に対してModIntの冪乗を定義 impl_power_for_unsigned!($modint_type, u8, u16, u32, u64, u128, usize); // 32bit以下の符号付き整数型に対してModIntの冪乗を定義 impl_power_for_small_signed!($modint_type, i8, i16, i32); // 64bitの符号付き整数型(isizeを含む)に対してModIntの冪乗を定義 impl_power_for_large_signed!($modint_type, i64, isize); // 128bitの符号付き整数型に対してModIntの冪乗を定義するマクロ impl Pow<i128> for $modint_type { fn pow(self, n: i128) -> Self { if n >= 0 { self.pow(n as u128) } else { self.pow(-n as u128).inv() } } } }; } // 符号無し整数型に対してModIntの冪乗を定義するマクロ macro_rules! impl_power_for_unsigned { ($modint_type:tt, $($unsigned_type:tt),*) => { $( impl Pow<$unsigned_type> for $modint_type { fn pow(self, mut n: $unsigned_type) -> Self { let mut ret = Self::new(1); let mut mul = self; while n != 0 { if n & 1 == 1 { ret *= mul; } mul *= mul; n >>= 1; } ret } } )* }; } // 32bit以下の符号付き整数型に対してModIntの冪乗を定義するマクロ macro_rules! impl_power_for_small_signed { ($modint_type:tt, $($small_signed_type:tt),*) => { $( impl Pow<$small_signed_type> for $modint_type { fn pow(self, n: $small_signed_type) -> Self { if n >= 0 { self.pow(n as u32) } else { self.pow(-n as u32).inv() } } } )* }; } // 64bitの符号付き整数型(isizeを含む)に対してModIntの冪乗を定義するマクロ macro_rules! impl_power_for_large_signed { ($modint_type:tt, $($large_signed_type:tt),*) => { $( impl Pow<$large_signed_type> for $modint_type { fn pow(self, n: $large_signed_type) -> Self { if n >= 0 { self.pow(n as u64) } else { self.pow(-n as u64).inv() } } } )* }; } // 各整数型に対して$modint_typeとの二項演算をオーバーロードするマクロ macro_rules! impl_ops { ($modint_type:tt, $($other_type:tt),*) => { $( impl Add<$other_type> for $modint_type { type Output = Self; fn add(self, rhs: $other_type) -> Self::Output { self + Self::new(rhs) } } impl Add<$modint_type> for $other_type { type Output = $modint_type; fn add(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) + rhs } } impl Sub<$other_type> for $modint_type { type Output = Self; fn sub(self, rhs: $other_type) -> Self::Output { self - Self::new(rhs) } } impl Sub<$modint_type> for $other_type { type Output = $modint_type; fn sub(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) - rhs } } impl Mul<$other_type> for $modint_type { type Output = Self; fn mul(self, rhs: $other_type) -> Self::Output { self * Self::new(rhs) } } impl Mul<$modint_type> for $other_type { type Output = $modint_type; fn mul(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) * rhs } } impl Div<$other_type> for $modint_type { type Output = Self; fn div(self, rhs: $other_type) -> Self::Output { self / Self::new(rhs) } } impl Div<$modint_type> for $other_type { type Output = $modint_type; fn div(self, rhs: $modint_type) -> Self::Output { $modint_type::new(self) / rhs } } impl AddAssign<$other_type> for $modint_type { fn add_assign(&mut self, other: $other_type) { *self = *self + Self::new(other); } } impl SubAssign<$other_type> for $modint_type { fn sub_assign(&mut self, other: $other_type) { *self = *self - Self::new(other); } } impl MulAssign<$other_type> for $modint_type { fn mul_assign(&mut self, other: $other_type) { *self = *self * Self::new(other); } } impl DivAssign<$other_type> for $modint_type { fn div_assign(&mut self, other: $other_type) { *self = *self / Self::new(other); } } )* }; } // 998244353を法とするModIntを定義 generate_modint!(ModInt998244353, 998244353); // 1000000007を法とするModIntを定義 generate_modint!(ModInt1000000007, 1000000007); } }