結果
| 問題 |
No.1417 100の倍数かつ正整数(2)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-09-04 19:57:25 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 5 ms / 3,000 ms |
| コード長 | 17,985 bytes |
| コンパイル時間 | 14,564 ms |
| コンパイル使用メモリ | 379,592 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-19 02:39:13 |
| 合計ジャッジ時間 | 15,936 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 |
ソースコード
use atcoder8_library::modint::ModInt1000000007;
type Mint = ModInt1000000007;
fn main() {
let cc: Vec<char> = {
let mut line = String::new();
std::io::stdin().read_line(&mut line).unwrap();
line.trim().chars().collect()
};
let digits: Vec<usize> = cc
.iter()
.map(|&c| c.to_digit(10).unwrap() as usize)
.collect();
let mut equal = [[Mint::new(0); 3]; 3];
let mut less = [[Mint::new(0); 3]; 3];
let divisible_cnt_by_2 = divisible_count(digits[0], 2);
let divisible_cnt_by_5 = divisible_count(digits[0], 5);
equal[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1;
for i in 1..digits[0] {
let divisible_cnt_by_2 = divisible_count(i, 2);
let divisible_cnt_by_5 = divisible_count(i, 5);
less[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1;
}
for &d in digits.iter().skip(1) {
let mut next_equal = [[Mint::new(0); 3]; 3];
let mut next_less = [[Mint::new(0); 3]; 3];
if d > 0 {
let divisible_cnt_by_2 = divisible_count(d, 2);
let divisible_cnt_by_5 = divisible_count(d, 5);
for two_cnt in 0..3 {
let next_two_cnt = (two_cnt + divisible_cnt_by_2).min(2);
for five_cnt in 0..3 {
let next_five_cnt = (five_cnt + divisible_cnt_by_5).min(2);
next_equal[next_two_cnt][next_five_cnt] += equal[two_cnt][five_cnt];
}
}
}
for i in 1..10 {
let divisible_cnt_by_2 = divisible_count(i, 2);
let divisible_cnt_by_5 = divisible_count(i, 5);
next_less[divisible_cnt_by_2.min(2)][divisible_cnt_by_5] += 1;
for two_cnt in 0..3 {
let next_two_cnt = (two_cnt + divisible_cnt_by_2).min(2);
for five_cnt in 0..3 {
let next_five_cnt = (five_cnt + divisible_cnt_by_5).min(2);
next_less[next_two_cnt][next_five_cnt] += less[two_cnt][five_cnt];
if i < d {
next_less[next_two_cnt][next_five_cnt] += equal[two_cnt][five_cnt];
}
}
}
}
equal = next_equal;
less = next_less;
}
let ans = (equal[2][2] + less[2][2]).get_val();
println!("{}", ans);
}
/// Counts how many times `a` is divisible by `b`.
/// If `a` is `0`, `1` is returned.
fn divisible_count(a: usize, b: usize) -> usize {
assert_ne!(b, 0, "`b` must be at lease 1.");
if a == 0 {
return 0;
}
let mut cnt = 0;
let mut t = a;
while t % b == 0 {
t /= b;
cnt += 1;
}
cnt
}
pub mod atcoder8_library {
pub mod modint {
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, ShrAssign, Sub, SubAssign,
};
pub trait RemEuclidU32 {
fn rem_euclid_u32(self, modulus: u32) -> u32;
}
pub fn modinv(a: u32, m: u32) -> u32 {
assert!(m >= 2);
let (mut a, mut b, mut s, mut t) = (a as i64, m as i64, 1, 0);
while b != 0 {
let q = a / b;
a -= q * b;
std::mem::swap(&mut a, &mut b);
s -= q * t;
std::mem::swap(&mut s, &mut t);
}
assert_eq!(
a.abs(),
1,
"The inverse does not exist. gcd(a, m) = {}",
a.abs()
);
s %= m as i64;
if s < 0 {
s += m as i64;
}
s as u32
}
// 32bit以下の符号付き整数型に対してrem_euclid_u32を実装するマクロ
macro_rules! impl_rem_euclid_u32_for_small_signed {
($($small_signed_type:tt),*) => {
$(
impl RemEuclidU32 for $small_signed_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = (self as i32) % (modulus as i32);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i32) as u32
}
}
}
)*
};
}
// 64bitの符号付き整数型(isizeを含む)に対してrem_euclid_u32を実装するマクロ
macro_rules! impl_rem_euclid_u32_for_large_signed {
($($large_signed_type:tt),*) => {
$(
impl RemEuclidU32 for $large_signed_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = (self as i64) % (modulus as i64);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i64) as u32
}
}
}
)*
};
}
// 32bit以上の符号無し整数型に対してrem_euclid_u32を実装するマクロ
macro_rules! impl_rem_euclid_u32_for_small_unsigned {
($($small_unsigned_type:tt),*) => {
$(
impl RemEuclidU32 for $small_unsigned_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
self as u32 % modulus
}
}
)*
};
}
// 64bit以上の符号無し整数型(usizeを含む)に対してrem_euclid_u32を実装するマクロ
macro_rules! impl_rem_euclid_u32_for_large_unsigned {
($($large_unsigned_type:tt),*) => {
$(
impl RemEuclidU32 for $large_unsigned_type {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
(self % modulus as $large_unsigned_type) as u32
}
}
)*
};
}
// 32bit以下の符号付き整数型に対してrem_euclid_u32を実装
impl_rem_euclid_u32_for_small_signed!(i8, i16, i32);
// 64bitの符号付き整数型(isizeを含む)に対してrem_euclid_u32を実装
impl_rem_euclid_u32_for_large_signed!(i64, isize);
// 32bit以上の符号無し整数型に対してrem_euclid_u32を実装
impl_rem_euclid_u32_for_small_unsigned!(u8, u16, u32);
// 64bit以上の符号無し整数型(usizeを含む)に対してrem_euclid_u32を実装
impl_rem_euclid_u32_for_large_unsigned!(u64, u128, usize);
// 128bitの符号付き整数型に対してrem_euclid_u32を実装
impl RemEuclidU32 for i128 {
fn rem_euclid_u32(self, modulus: u32) -> u32 {
let ret = self % (modulus as i128);
if ret >= 0 {
ret as u32
} else {
(ret + modulus as i128) as u32
}
}
}
pub trait Pow<T: Copy + ShrAssign> {
fn pow(self, n: T) -> Self;
}
#[macro_export]
macro_rules! generate_modint {
// 型名と法を指定してModIntを生成
($modint_type:tt, $modulus:literal) => {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct $modint_type {
val: u32,
}
impl $modint_type {
const MOD: u32 = $modulus;
}
impl $modint_type {
pub fn new<T: RemEuclidU32>(val: T) -> Self {
Self {
val: val.rem_euclid_u32($modulus),
}
}
pub fn raw(val: u32) -> Self {
Self { val }
}
pub fn get_val(&self) -> u32 {
self.val
}
pub fn inv(&self) -> Self {
Self::new(modinv(self.val, $modulus))
}
}
impl<T: RemEuclidU32> From<T> for $modint_type {
fn from(val: T) -> Self {
Self::new(val)
}
}
impl Add for $modint_type {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self::new(self.val + rhs.val)
}
}
impl Sub for $modint_type {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self::new(self.val + $modulus - rhs.val)
}
}
impl Mul for $modint_type {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self::new(self.val as u64 * rhs.val as u64)
}
}
impl Div for $modint_type {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl AddAssign for $modint_type {
fn add_assign(&mut self, other: Self) {
*self = *self + other;
}
}
impl SubAssign for $modint_type {
fn sub_assign(&mut self, other: Self) {
*self = *self - other;
}
}
impl MulAssign for $modint_type {
fn mul_assign(&mut self, other: Self) {
*self = *self * other;
}
}
impl DivAssign for $modint_type {
fn div_assign(&mut self, other: Self) {
*self = *self / other;
}
}
impl Neg for $modint_type {
type Output = Self;
fn neg(self) -> Self::Output {
Self::new(Self::MOD - self.val)
}
}
// 各整数型に対して$modint_typeとの二項演算を定義
impl_ops!(
$modint_type,
i8,
i16,
i32,
i64,
i128,
isize,
u8,
u16,
u32,
u64,
u128,
usize
);
// 符号無し整数型に対してModIntの冪乗を定義
impl_power_for_unsigned!($modint_type, u8, u16, u32, u64, u128, usize);
// 32bit以下の符号付き整数型に対してModIntの冪乗を定義
impl_power_for_small_signed!($modint_type, i8, i16, i32);
// 64bitの符号付き整数型(isizeを含む)に対してModIntの冪乗を定義
impl_power_for_large_signed!($modint_type, i64, isize);
// 128bitの符号付き整数型に対してModIntの冪乗を定義するマクロ
impl Pow<i128> for $modint_type {
fn pow(self, n: i128) -> Self {
if n >= 0 {
self.pow(n as u128)
} else {
self.pow(-n as u128).inv()
}
}
}
};
}
// 符号無し整数型に対してModIntの冪乗を定義するマクロ
macro_rules! impl_power_for_unsigned {
($modint_type:tt, $($unsigned_type:tt),*) => {
$(
impl Pow<$unsigned_type> for $modint_type {
fn pow(self, mut n: $unsigned_type) -> Self {
let mut ret = Self::new(1);
let mut mul = self;
while n != 0 {
if n & 1 == 1 {
ret *= mul;
}
mul *= mul;
n >>= 1;
}
ret
}
}
)*
};
}
// 32bit以下の符号付き整数型に対してModIntの冪乗を定義するマクロ
macro_rules! impl_power_for_small_signed {
($modint_type:tt, $($small_signed_type:tt),*) => {
$(
impl Pow<$small_signed_type> for $modint_type {
fn pow(self, n: $small_signed_type) -> Self {
if n >= 0 {
self.pow(n as u32)
} else {
self.pow(-n as u32).inv()
}
}
}
)*
};
}
// 64bitの符号付き整数型(isizeを含む)に対してModIntの冪乗を定義するマクロ
macro_rules! impl_power_for_large_signed {
($modint_type:tt, $($large_signed_type:tt),*) => {
$(
impl Pow<$large_signed_type> for $modint_type {
fn pow(self, n: $large_signed_type) -> Self {
if n >= 0 {
self.pow(n as u64)
} else {
self.pow(-n as u64).inv()
}
}
}
)*
};
}
// 各整数型に対して$modint_typeとの二項演算をオーバーロードするマクロ
macro_rules! impl_ops {
($modint_type:tt, $($other_type:tt),*) => {
$(
impl Add<$other_type> for $modint_type {
type Output = Self;
fn add(self, rhs: $other_type) -> Self::Output {
self + Self::new(rhs)
}
}
impl Add<$modint_type> for $other_type {
type Output = $modint_type;
fn add(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) + rhs
}
}
impl Sub<$other_type> for $modint_type {
type Output = Self;
fn sub(self, rhs: $other_type) -> Self::Output {
self - Self::new(rhs)
}
}
impl Sub<$modint_type> for $other_type {
type Output = $modint_type;
fn sub(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) - rhs
}
}
impl Mul<$other_type> for $modint_type {
type Output = Self;
fn mul(self, rhs: $other_type) -> Self::Output {
self * Self::new(rhs)
}
}
impl Mul<$modint_type> for $other_type {
type Output = $modint_type;
fn mul(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) * rhs
}
}
impl Div<$other_type> for $modint_type {
type Output = Self;
fn div(self, rhs: $other_type) -> Self::Output {
self / Self::new(rhs)
}
}
impl Div<$modint_type> for $other_type {
type Output = $modint_type;
fn div(self, rhs: $modint_type) -> Self::Output {
$modint_type::new(self) / rhs
}
}
impl AddAssign<$other_type> for $modint_type {
fn add_assign(&mut self, other: $other_type) {
*self = *self + Self::new(other);
}
}
impl SubAssign<$other_type> for $modint_type {
fn sub_assign(&mut self, other: $other_type) {
*self = *self - Self::new(other);
}
}
impl MulAssign<$other_type> for $modint_type {
fn mul_assign(&mut self, other: $other_type) {
*self = *self * Self::new(other);
}
}
impl DivAssign<$other_type> for $modint_type {
fn div_assign(&mut self, other: $other_type) {
*self = *self / Self::new(other);
}
}
)*
};
}
// 998244353を法とするModIntを定義
generate_modint!(ModInt998244353, 998244353);
// 1000000007を法とするModIntを定義
generate_modint!(ModInt1000000007, 1000000007);
}
}