結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー 👑 MizarMizar
提出日時 2022-09-05 00:02:16
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 15 ms / 9,973 ms
コード長 42,543 bytes
コンパイル時間 13,530 ms
コンパイル使用メモリ 385,740 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-19 07:47:59
合計ジャッジ時間 14,868 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,820 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 11 ms
6,816 KB
testcase_05 AC 12 ms
6,816 KB
testcase_06 AC 10 ms
6,816 KB
testcase_07 AC 10 ms
6,816 KB
testcase_08 AC 10 ms
6,816 KB
testcase_09 AC 15 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// -*- coding:utf-8-unix -*-

use core::num::{NonZeroU128,NonZeroU64};
// 除数をNonZeroU型にした除算/剰余算の選択
macro_rules! cond_nzdiv {
    ($nzdiv:expr, $no_nzdiv:expr) => {
        $nzdiv // 1.51.0以降 feature = "nonzero_div"
        //$no_nzdiv // 1.50.0以前
    }
}
// NonZeroU64/NonderoU128型を使用するか
const USE_NZU64: bool = true;

// モンゴメリ剰余乗算 (Montgomery modular multiplication)
trait MontVal<T, BitCountType=u32> {
    fn n(&self) -> T;
    fn ni(&self) -> T;
    fn nh(&self) -> T;
    fn r(&self) -> T;
    fn rn(&self) -> T;
    fn r2(&self) -> T;
    fn d(&self) -> T;
    fn k(&self) -> BitCountType;
}
trait MontOps<T, BitCountType=u32> {
    fn add(&self, a: T, b: T) -> T;
    fn sub(&self, a: T, b: T) -> T;
    fn div2(&self, ar: T) -> T;
    fn mrmul(&self, ar: T, br: T) -> T;
    fn mr(&self, ar: T) -> T;
    fn ar(&self, a: T) -> T;
    fn pow(&self, ar: T, b: T) -> T;
    fn powodd(&self, ar: T, b: T) -> T;
}
trait MontModN<T, BitCountType=u32> {
    fn modn(&self, x: T) -> T;
}
trait MontNew<T, U=T, BitCountType=u32> {
    fn new(n: T) -> Self;
}
struct Mont<T, BitCountType=u32> {
    n: T, // n is odd, and n > 2
    ni: T, // n * ni == 1 (mod 2**64)
    nh: T, // == (n + 1) / 2
    r: T, // == 2**64 (mod n)
    rn: T, // == -(2**64) (mod n)
    r2: T, // == 2**128 (mod n)
    d: T, // == (n - 1) >> (n - 1).trailing_zeros()
    k: BitCountType, // == (n - 1).trailing_zeros()
}
impl MontVal<u64> for Mont<NonZeroU64> {
    #[inline] fn n(&self) -> u64 { self.n.get() }
    #[inline] fn ni(&self) -> u64 { self.ni.get() }
    #[inline] fn nh(&self) -> u64 { self.nh.get() }
    #[inline] fn r(&self) -> u64 { self.r.get() }
    #[inline] fn rn(&self) -> u64 { self.rn.get() }
    #[inline] fn r2(&self) -> u64 { self.r2.get() }
    #[inline] fn d(&self) -> u64 { self.d.get() }
    #[inline] fn k(&self) -> u32 { self.k }
}
impl MontVal<u64> for Mont<u64> {
    #[inline] fn n(&self) -> u64 { self.n }
    #[inline] fn ni(&self) -> u64 { self.ni }
    #[inline] fn nh(&self) -> u64 { self.nh }
    #[inline] fn r(&self) -> u64 { self.r }
    #[inline] fn rn(&self) -> u64 { self.rn }
    #[inline] fn r2(&self) -> u64 { self.r2 }
    #[inline] fn d(&self) -> u64 { self.d }
    #[inline] fn k(&self) -> u32 { self.k }
}
macro_rules! mont_ops_u64 { ($x:ty) => { impl MontOps<u64> for $x {
    #[inline]
    fn add(&self, a: u64, b: u64) -> u64 {
        // == a + b (mod n)
        debug_assert!(a < self.n());
        debug_assert!(b < self.n());
        let (t, fa) = a.overflowing_add(b);
        let (u, fs) = t.overflowing_sub(self.n());
        if fa { u } else { if fs { t } else { u } }
    }
    #[inline]
    fn sub(&self, a: u64, b: u64) -> u64 {
        // == a - b (mod n)
        debug_assert!(a < self.n());
        debug_assert!(b < self.n());
        let (t, f) = a.overflowing_sub(b);
        if f { t.wrapping_add(self.n()) } else { t }
    }
    #[inline]
    fn div2(&self, ar: u64) -> u64 {
        // == ar / 2 (mod n)
        debug_assert!(ar < self.n());
        let t = ar >> 1;
        if (ar & 1) == 0 { t } else { t + self.nh() }
    }
    #[inline]
    fn mrmul(&self, ar: u64, br: u64) -> u64 {
        // == (ar * br) / r (mod n)
        debug_assert!(ar < self.n());
        debug_assert!(br < self.n());
        let (n, ni) = (self.n(), self.ni());
        let t: u128 = (ar as u128) * (br as u128);
        let (t, f) = ((t >> 64) as u64).overflowing_sub((((((t as u64).wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64);
        if f { t.wrapping_add(n) } else { t }
    }
    #[inline]
    fn mr(&self, ar: u64) -> u64 {
        // == ar / r (mod n)
        debug_assert!(ar < self.n());
        let (n, ni) = (self.n(), self.ni());
        let (t, f) = (((((ar.wrapping_mul(ni)) as u128) * (n as u128)) >> 64) as u64).overflowing_neg();
        if f { t.wrapping_add(n) } else { t }
    }
    #[inline]
    fn ar(&self, a: u64) -> u64 {
        // == a * r (mod n)
        debug_assert!(a < self.n());
        self.mrmul(a, self.r2())
    }
    #[inline]
    fn pow(&self, mut ar: u64, mut b: u64) -> u64 {
        // == ((ar / r) ** b) * r (mod n)
        debug_assert!(ar < self.n());
        let mut t = if (b & 1) == 0 { self.r() } else { ar };
        loop {
            b >>= 1;
            if b == 0 { return t; }
            ar = self.mrmul(ar, ar);
            if (b & 1) != 0 { t = self.mrmul(t, ar); }
        }
    }
    #[inline]
    fn powodd(&self, mut ar: u64, mut b: u64) -> u64 {
        // == ((ar / r) ** b) * r (mod n)
        debug_assert!(ar < self.n());
        debug_assert_eq!(b & 1, 1); // b is odd
        let mut t = ar;
        loop {
            b >>= 1;
            if b == 0 { return t; }
            ar = self.mrmul(ar, ar);
            if (b & 1) != 0 { t = self.mrmul(t, ar); }
        }
    }
}}}
mont_ops_u64!(Mont<NonZeroU64>);
mont_ops_u64!(Mont<u64>);
impl MontModN<u64> for Mont<NonZeroU64> {
    #[inline] fn modn(&self, x: u64) -> u64 { cond_nzdiv!(x % self.n, x % self.n()) }
}
impl MontModN<u64> for Mont<u64> {
    #[inline] fn modn(&self, x: u64) -> u64 { x % self.n() }
}
impl MontNew<NonZeroU64, u64> for Mont<NonZeroU64> {
    #[inline]
    fn new(n: NonZeroU64) -> Self {
        debug_assert_eq!(n.get() & 1, 1);
        // // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
        // ni0 := n; // = 2*k+1 = (1+(2**3)*((k*(k+1)/2)**1))/(2*k+1)
        let mut ni = n.get();
        // ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**6)*((k*(k+1)/2)**2))/(2*k+1)
        // ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**12)*((k*(k+1)/2)**4))/(2*k+1)
        // ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**24)*((k*(k+1)/2)**8))/(2*k+1)
        // ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**48)*((k*(k+1)/2)**16))/(2*k+1)
        // ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**96)*((k*(k+1)/2)**32))/(2*k+1)
        // // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64
        for _ in 0..5 {
            ni = ni.wrapping_mul(2u64.wrapping_sub(n.get().wrapping_mul(ni)));
        }
        debug_assert_eq!(n.get().wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64)
        let nh = (n.get() >> 1) + 1;
        let r = cond_nzdiv!(
            1u64.wrapping_neg() % n,
            1u64.wrapping_neg() % n.get()
        ) + 1; // == 2**64 (mod n)
        let rn = n.get() - r;
        let r2 = cond_nzdiv!(
            1u128.wrapping_neg() % NonZeroU128::from(n),
            1u128.wrapping_neg() % NonZeroU128::from(n).get()
        ) as u64 + 1; // == 2**128 (mod n)
        let mut d = n.get() - 1;
        let k = d.trailing_zeros();
        d >>= k;
        let ni = NonZeroU64::new(ni).unwrap();
        let nh = NonZeroU64::new(nh).unwrap();
        let r = NonZeroU64::new(r).unwrap();
        let rn = NonZeroU64::new(rn).unwrap();
        let r2 = NonZeroU64::new(r2).unwrap();
        let d = NonZeroU64::new(d).unwrap();
        debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mr(r.get()), 1); // r / r == 1 (mod n)
        debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mrmul(1, r2.get()), r.get()); // r2 / r == r (mod n)
        Self { n, ni, nh, r, rn, r2, d, k }
    }
}
impl MontNew<u64> for Mont<u64> {
    #[inline]
    fn new(n: u64) -> Self {
        debug_assert_eq!(n & 1, 1);
        // // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
        // ni0 := n; // = 2*k+1 = (1+(2**3)*((k*(k+1)/2)**1))/(2*k+1)
        let mut ni = n;
        // ni1 := ni0 * (2 - (n * ni0)); // = (1-(2**6)*((k*(k+1)/2)**2))/(2*k+1)
        // ni2 := ni1 * (2 - (n * ni1)); // = (1-(2**12)*((k*(k+1)/2)**4))/(2*k+1)
        // ni3 := ni2 * (2 - (n * ni2)); // = (1-(2**24)*((k*(k+1)/2)**8))/(2*k+1)
        // ni4 := ni3 * (2 - (n * ni3)); // = (1-(2**48)*((k*(k+1)/2)**16))/(2*k+1)
        // ni5 := ni4 * (2 - (n * ni4)); // = (1-(2**96)*((k*(k+1)/2)**32))/(2*k+1)
        // // (n * ni5) mod 2**64 = ((2*k+1) * ni5) mod 2**64 = 1 mod 2**64
        for _ in 0..5 {
            ni = ni.wrapping_mul(2u64.wrapping_sub(n.wrapping_mul(ni)));
        }
        debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64)
        let nh = (n >> 1) + 1;
        let r = (1u64.wrapping_neg() % n) + 1; // == 2**64 (mod n)
        let rn = n - r;
        let r2 = ((1u128.wrapping_neg() % (n as u128)) as u64) + 1; // == 2**128 (mod n)
        let mut d = n - 1;
        let k = d.trailing_zeros();
        d >>= k;
        debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mr(r), 1); // r / r == 1 (mod n)
        debug_assert_eq!(Self { n, ni, nh, r, rn, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n)
        Self { n, ni, nh, r, rn, r2, d, k }
    }
}

#[inline]
// ニュートン法による整数平方根
fn isqrt64n(x: u64) -> u64 {
    if x <= 1 { return x; }
    let k = 32 - ((x - 1).leading_zeros() >> 1);
    let mut s = 1u64 << k; // s = 2**k
    let mut t = (s + (x >> k)) >> 1; // t = (s + x/s)/2
    // whileループ回数=除算回数は最大6回を想定
    // s > floor(sqrt(x)) -> floor(sqrt(x)) <= t < s
    // s == floor(sqrt(x)) -> floor(sqrt(x)) <= t <= floor(sqrt(x)) + 1
    while t < s {
        s = t;
        t = (s + (x / s)) >> 1;
    }
    s
}
#[inline]
// 平方数判定 (true: 平方数である, false: 平方数ではない)
fn issq_u64_n(x: u64) -> bool {
    let sqrt = isqrt64n(x);
    sqrt * sqrt == x
}
#[inline]
// 擬平方数判定 mod64 12/64 0.1875 (true: 平方数かもしれない, false: 平方数ではない)
fn issq_u64_mod64(x: u64) -> bool {
    (0x202021202030213u64 >> (x & 63)) & 1 == 1
}
#[inline]
// 擬平方数判定 mod4095 336/4095 0.0821 (true: 平方数かもしれない, false: 平方数ではない)
fn issq_u64_mod4095(x: u64) -> bool {
    const SQTABLE_MOD4095: [u64; 64] = [0x2001002010213,0x4200001008028001,0x20000010004,0x80200082010,0x1800008200044029,0x120080000010,0x2200000080410400,0x8100041000200800,0x800004000020100,0x402000400082201,0x9004000040,0x800002000880,0x18002000012000,0x801208,0x26100000804010,0x80000080000002,0x108040040101045,0x20c00004000102,0x400000100c0010,0x1300000040208,0x804000020010000,0x1008402002400080,0x201001000200040,0x4402000000806000,0x10402000000,0x1040008001200801,0x4080000000020400,0x10083080000002,0x8220140000040000,0x800084020100000,0x80010400010000,0x1200020108008060,0x180000000,0x400002400000018,0x4241000200,0x100800000000,0x10201008400483,0xc008000208201000,0x800420000100,0x2010002000410,0x28041000000,0x4010080000024,0x400480010010080,0x200040028000008,0x100810084020,0x20c0401000080000,0x1000240000220000,0x4000020800,0x410000000480000,0x8004008000804201,0x806020000104000,0x2080002000211000,0x1001008001000,0x20000010024000,0x480200002040000,0x48200044008000,0x100000000010080,0x80090400042,0x41040200800200,0x4000020100110,0x2000400082200010,0x1008200000000040,0x2004800002,0x2002010000080];
    let p = (x % 4095) as usize;
    (SQTABLE_MOD4095[p >> 6] >> (p & 63)) & 1 == 1
}
// 平方数判定 (true: 平方数である, false: 平方数ではない)
#[inline]
fn issq_u64(x: u64) -> bool {
    issq_u64_mod64(x) &&
    issq_u64_mod4095(x) &&
    issq_u64_n(x)
}

// Jacobi symbol: ヤコビ記号
#[inline]
fn jacobi(a: i64, mut n: u64) -> i32 {
    if n == 0 { return if a == 1 || a == -1 { 1 } else { 0 }; }
    let (mut a, mut j): (u64, i32) = if a >= 0 { (a as u64, 1) } else if (n & 3) == 3 { ((-a) as u64, -1) } else { ((-a) as u64, 1) };
    while a != 0 {
        let ba = a.trailing_zeros();
        a >>= ba;
        if ((n & 7) == 3 || (n & 7) == 5) && (ba & 1) != 0 { j = -j; }
        if (a & n & 3) == 3 { j = -j; }
        std::mem::swap(&mut n, &mut a);
        a %= n;
        if a > (n >> 1) {
            a = n - a;
            if (n & 3) == 3 { j = -j; }
        }
    }
    if n == 1 { j } else { 0 }
}

trait PrimeTestU64Trait<T> : MontOps<u64> + MontVal<u64> + MontModN<u64> {
    #[inline]
    fn primetest_base2(&self) -> bool {
        // Mirrer-Rabin primality test (base 2)
        // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
        let (r, rn, d, k) = (self.r(), self.rn(), self.d(), self.k());
        let mut br = self.powodd(self.add(self.r(), self.r()), d);
        if br == r || br == rn { return true; }
        for _ in 1..k {
            br = self.mrmul(br, br);
            if br == rn { return true; }
        }
        false
    }
    #[inline]
    fn primetest_miller(&self, mut base: u64) -> bool {
        // Miller-Rabin primality test
        let (n, r, rn, d, k) = (self.n(), self.r(), self.rn(), self.d(), self.k());
        if base > n { base = self.modn(base); if base == 0 { return true; } }
        let mut tr = self.pow(self.ar(base), d);
        if tr == r || tr == rn { return true; }
        for _ in 1..k { tr = self.mrmul(tr, tr); if tr == rn { return true; } }
        false
    }
    #[inline]
    fn primetest_lucas(&self) -> bool {
        // Lucas primality test
        // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
        let n = self.n();
        let mut d: i64 = 5;
        for i in 0u32.. {
            debug_assert!(i < 64);
            match jacobi(d, n) {
                -1 => break,
                0 => if ((d.abs()) as u64) < n { return false; },
                _ => {},
            }
            if i == 8 && issq_u64(n) { return false; }
            if (i & 1) == 1 { d = 2 - d; } else { d = -(d + 2); }
        }
        let qm = self.ar(self.modn(if d < 0 {((1 - d) as u64) / 4} else {n - ((d - 1) as u64) / 4}));
        let mut k = (n + 1) << (n + 1).leading_zeros();
        let mut um = self.r();
        let mut vm = self.r();
        let mut qn = qm;
        let dm: u64 = self.ar(if d < 0 { n - self.modn((-d) as u64) } else { self.modn(d as u64) });
        k <<= 1;
        while k != 0 {
            um = self.mrmul(um, vm);
            vm = self.sub(self.mrmul(vm, vm), self.add(qn, qn));
            qn = self.mrmul(qn, qn);
            if (k >> 63) != 0 {
                let uu = self.div2(self.add(um, vm));
                vm = self.div2(self.add(self.mrmul(dm, um), vm));
                um = uu;
                qn = self.mrmul(qn, qm);
            }
            k <<= 1;
        }
        if um == 0 || vm == 0 {
            return true;
        }
        let mut x = (n + 1) & (!n);
        x >>= 1;
        while x != 0 {
            um = self.mrmul(um, vm);
            vm = self.sub(self.mrmul(vm, vm), self.add(qn, qn));
            if vm == 0 {
                return true;
            }
            qn = self.mrmul(qn, qn);
            x >>= 1;
        }
        false
    }
    #[inline]
    fn primetest_bpsw(&self) -> bool {
        // Mirrer-Rabin primality test (base 2)
        // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
        self.primetest_base2() &&
        // Lucas primality test
        // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
        self.primetest_lucas()
    }
}

impl PrimeTestU64Trait<NonZeroU64> for Mont<NonZeroU64> {}
impl PrimeTestU64Trait<u64> for Mont<u64> {}

// Deterministic variants of the Miller-Rabin primality test http://miller-rabin.appspot.com/
trait MillerU64<T> : PrimeTestU64Trait<T> {
    const MILLER_U64_1BASES: [u64; 1] = [
        9345883071009581737,
    ];
    const MILLER_U64_2BASES: [u64; 2] = [
        336781006125,
        9639812373923155,
    ];
    const MILLER_U64_3BASES: [u64; 3] = [
        4230279247111683200,
        14694767155120705706,
        16641139526367750375,
    ];
    const MILLER_U64_4BASES: [u64; 4] = [
        2,
        141889084524735,
        1199124725622454117,
        11096072698276303650,
    ];
    const MILLER_U64_5BASES: [u64; 5] = [
        2,
        4130806001517,
        149795463772692060,
        186635894390467037,
        3967304179347715805,
    ];
    const MILLER_U64_6BASES: [u64; 6] = [
        2,
        123635709730000,
        9233062284813009,
        43835965440333360,
        761179012939631437,
        1263739024124850375,
    ];
    const MILLER_U64_7BASES: [u64; 7] = [
        2,
        325,
        9375,
        28178,
        450775,
        9780504,
        1795265022,
    ];
    #[inline]
    fn primetest_miller_1bases(&self) -> bool {
        debug_assert!(self.n() < 341531);
        Self::MILLER_U64_1BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_2bases(&self) -> bool {
        debug_assert!(self.n() < 1050535501);
        Self::MILLER_U64_2BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_3bases(&self) -> bool {
        debug_assert!(self.n() < 350269456337);
        Self::MILLER_U64_3BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_4bases(&self) -> bool {
        debug_assert!(self.n() < 55245642489451);
        Self::MILLER_U64_4BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_5bases(&self) -> bool {
        debug_assert!(self.n() < 7999252175582851);
        Self::MILLER_U64_5BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_6bases(&self) -> bool {
        debug_assert!(self.n() < 585226005592931977);
        Self::MILLER_U64_6BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_7bases(&self) -> bool {
        Self::MILLER_U64_7BASES.iter().all(|&base| self.primetest_miller(base))
    }
    #[inline]
    fn primetest_miller_mbases(&self) -> bool {
        // Deterministic variants of the Miller-Rabin primality test http://miller-rabin.appspot.com/
        match self.n() {
            0..=341530             => Self::MILLER_U64_1BASES.iter(),
            0..=1050535500         => Self::MILLER_U64_2BASES.iter(),
            0..=350269456336       => Self::MILLER_U64_3BASES.iter(),
            0..=55245642489450     => Self::MILLER_U64_4BASES.iter(),
            0..=7999252175582850   => Self::MILLER_U64_5BASES.iter(),
            0..=585226005592931976 => Self::MILLER_U64_6BASES.iter(),
            _                      => Self::MILLER_U64_7BASES.iter(),
        }.all(|&base| self.primetest_miller(base))
    }
}

impl MillerU64<NonZeroU64> for Mont<NonZeroU64> {}
impl MillerU64<u64> for Mont<u64> {}

// Baillie–PSW primarity test (nonzerou64)
pub fn primetest_nzu64_bpsw(n: NonZeroU64) -> bool {
    if n.get() == 2 { return true; }
    if n.get() == 1 || (n.get() & 1) == 0 { return false; }
    let mont = Mont::<NonZeroU64>::new(n);
    mont.primetest_bpsw()
}
// Baillie–PSW primarity test (u64)
pub fn primetest_u64_bpsw(n: u64) -> bool {
    if n == 2 { return true; }
    if n == 1 || (n & 1) == 0 { return false; }
    let mont = Mont::<u64>::new(n);
    mont.primetest_bpsw()
}
// Miller-Rabin primarity test (nonzerou64)
pub fn primetest_nzu64_miller_mbases(n: NonZeroU64) -> bool {
    if n.get() == 2 { return true; }
    if n.get() == 1 || (n.get() & 1) == 0 { return false; }
    let mont = Mont::<NonZeroU64>::new(n);
    mont.primetest_miller_mbases()
}
// Miller-Rabin primarity test (u64)
pub fn primetest_u64_miller_mbases(n: u64) -> bool {
    if n == 2 { return true; }
    if n == 1 || (n & 1) == 0 { return false; }
    let mont = Mont::<u64>::new(n);
    mont.primetest_miller_mbases()
}

#[cfg(test)]
mod tests {
    use crate::*;

    // ten least k's for which (2**n)-k is prime
    // https://primes.utm.edu/lists/2small/0bit.html
    const PRIMES_LAST10: [(u32,[u64;10]);57] = [
        (8,[5,15,17,23,27,29,33,45,57,59]),
        (9,[3,9,13,21,25,33,45,49,51,55]),
        (10,[3,5,11,15,27,33,41,47,53,57]),
        (11,[9,19,21,31,37,45,49,51,55,61]),
        (12,[3,5,17,23,39,45,47,69,75,77]),
        (13,[1,13,21,25,31,45,69,75,81,91]),
        (14,[3,15,21,23,35,45,51,65,83,111]),
        (15,[19,49,51,55,61,75,81,115,121,135]),
        (16,[15,17,39,57,87,89,99,113,117,123]),
        (17,[1,9,13,31,49,61,63,85,91,99]),
        (18,[5,11,17,23,33,35,41,65,75,93]),
        (19,[1,19,27,31,45,57,67,69,85,87]),
        (20,[3,5,17,27,59,69,129,143,153,185]),
        (21,[9,19,21,55,61,69,105,111,121,129]),
        (22,[3,17,27,33,57,87,105,113,117,123]),
        (23,[15,21,27,37,61,69,135,147,157,159]),
        (24,[3,17,33,63,75,77,89,95,117,167]),
        (25,[39,49,61,85,91,115,141,159,165,183]),
        (26,[5,27,45,87,101,107,111,117,125,135]),
        (27,[39,79,111,115,135,187,199,219,231,235]),
        (28,[57,89,95,119,125,143,165,183,213,273]),
        (29,[3,33,43,63,73,75,93,99,121,133]),
        (30,[35,41,83,101,105,107,135,153,161,173]),
        (31,[1,19,61,69,85,99,105,151,159,171]),
        (32,[5,17,65,99,107,135,153,185,209,267]),
        (33,[9,25,49,79,105,285,301,303,321,355]),
        (34,[41,77,113,131,143,165,185,207,227,281]),
        (35,[31,49,61,69,79,121,141,247,309,325]),
        (36,[5,17,23,65,117,137,159,173,189,233]),
        (37,[25,31,45,69,123,141,199,201,351,375]),
        (38,[45,87,107,131,153,185,191,227,231,257]),
        (39,[7,19,67,91,135,165,219,231,241,301]),
        (40,[87,167,195,203,213,285,293,299,389,437]),
        (41,[21,31,55,63,73,75,91,111,133,139]),
        (42,[11,17,33,53,65,143,161,165,215,227]),
        (43,[57,67,117,175,255,267,291,309,319,369]),
        (44,[17,117,119,129,143,149,287,327,359,377]),
        (45,[55,69,81,93,121,133,139,159,193,229]),
        (46,[21,57,63,77,167,197,237,287,305,311]),
        (47,[115,127,147,279,297,339,435,541,619,649]),
        (48,[59,65,89,93,147,165,189,233,243,257]),
        (49,[81,111,123,139,181,201,213,265,283,339]),
        (50,[27,35,51,71,113,117,131,161,195,233]),
        (51,[129,139,165,231,237,247,355,391,397,439]),
        (52,[47,143,173,183,197,209,269,285,335,395]),
        (53,[111,145,231,265,315,339,343,369,379,421]),
        (54,[33,53,131,165,195,245,255,257,315,327]),
        (55,[55,67,99,127,147,169,171,199,207,267]),
        (56,[5,27,47,57,89,93,147,177,189,195]),
        (57,[13,25,49,61,69,111,195,273,363,423]),
        (58,[27,57,63,137,141,147,161,203,213,251]),
        (59,[55,99,225,427,517,607,649,687,861,871]),
        (60,[93,107,173,179,257,279,369,395,399,453]),
        (61,[1,31,45,229,259,283,339,391,403,465]),
        (62,[57,87,117,143,153,167,171,195,203,273]),
        (63,[25,165,259,301,375,387,391,409,457,471]),
        (64,[59,83,95,179,189,257,279,323,353,363]),
    ];

    #[test]
    fn test_nzu64_nbits() {
        // ten least k's for which (2**n)-k is prime
        // https://primes.utm.edu/lists/2small/0bit.html
        let start_time = std::time::Instant::now();
        for (bit_ref, kvec) in PRIMES_LAST10.iter() {
            let bit = *bit_ref;
            let &lastk = kvec.iter().last().unwrap();
            for k in 1..=lastk {
                if (k & 1) == 0 { continue; }
                let n = (if bit < 64 { 1u64 << bit } else { 0u64 }).wrapping_sub(k);
                let n = NonZeroU64::new(n).unwrap();
                let f = kvec.binary_search(&k).is_ok();
                let mont = Mont::<NonZeroU64>::new(n);
                // Deterministic variants of the Miller-Rabin primality test
                // http://miller-rabin.appspot.com/
                // n < 341531 : 1 base Miller-Rabin primality test
                if n.get() < 341531 { assert_eq!(mont.primetest_miller_1bases(), f); }
                // n < 1050535501 : 2 bases Miller-Rabin primality test
                if n.get() < 1050535501 { assert_eq!(mont.primetest_miller_2bases(), f); }
                // n < 350269456337 : 3 bases Miller-Rabin primality test
                if n.get() < 350269456337 { assert_eq!(mont.primetest_miller_3bases(), f); }
                // n < 55245642489451 : 4 bases Miller-Rabin primality test
                if n.get() < 55245642489451 { assert_eq!(mont.primetest_miller_4bases(), f); }
                // n < 7999252175582851 : 5 bases Miller-Rabin primality test
                if n.get() < 7999252175582851 { assert_eq!(mont.primetest_miller_5bases(), f); }
                // n < 585226005592931977 : 6 bases Miller-Rabin primality test
                if n.get() < 585226005592931977 { assert_eq!(mont.primetest_miller_6bases(), f); }
                // n for all 64bit integer : 7 bases Miller-Rabin primality test
                assert_eq!(mont.primetest_miller_7bases(), f);
                // n for all 64bit integer : multi bases Miller-Rabin primality test
                assert_eq!(mont.primetest_miller_mbases(), f);
                // Baillie–PSW primality test
                assert_eq!(mont.primetest_bpsw(), f);
                // Lucas test
                assert_eq!(mont.primetest_lucas(), mont.primetest_lucas());
            }
        }
        eprint!("test_nzu64_nbits {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_u64_nbits() {
        // ten least k's for which (2**n)-k is prime
        // https://primes.utm.edu/lists/2small/0bit.html
        let start_time = std::time::Instant::now();
        for (bit_ref, kvec) in PRIMES_LAST10.iter() {
            let bit = *bit_ref;
            let &lastk = kvec.iter().last().unwrap();
            for k in 1..=lastk {
                if (k & 1) == 0 { continue; }
                let n = (if bit < 64 { 1u64 << bit } else { 0u64 }).wrapping_sub(k);
                let f = kvec.binary_search(&k).is_ok();
                let mont = Mont::<u64>::new(n);
                // Deterministic variants of the Miller-Rabin primality test
                // http://miller-rabin.appspot.com/
                // n < 341531 : 1 base Miller-Rabin primality test
                if n < 341531 { assert_eq!(mont.primetest_miller_1bases(), f); }
                // n < 1050535501 : 2 bases Miller-Rabin primality test
                if n < 1050535501 { assert_eq!(mont.primetest_miller_2bases(), f); }
                // n < 350269456337 : 3 bases Miller-Rabin primality test
                if n < 350269456337 { assert_eq!(mont.primetest_miller_3bases(), f); }
                // n < 55245642489451 : 4 bases Miller-Rabin primality test
                if n < 55245642489451 { assert_eq!(mont.primetest_miller_4bases(), f); }
                // n < 7999252175582851 : 5 bases Miller-Rabin primality test
                if n < 7999252175582851 { assert_eq!(mont.primetest_miller_5bases(), f); }
                // n < 585226005592931977 : 6 bases Miller-Rabin primality test
                if n < 585226005592931977 { assert_eq!(mont.primetest_miller_6bases(), f); }
                // n for all 64bit integer : 7 bases Miller-Rabin primality test
                assert_eq!(mont.primetest_miller_7bases(), f);
                // n for all 64bit integer : multi bases Miller-Rabin primality test
                assert_eq!(mont.primetest_miller_mbases(), f);
                // Baillie–PSW primality test
                assert_eq!(mont.primetest_bpsw(), f);
                // Lucas test
                assert_eq!(mont.primetest_lucas(), mont.primetest_lucas());
            }
        }
        eprint!("test_u64_nbits {}us\n", start_time.elapsed().as_micros());
    }

    // #SPSP-2 Miller-Rabin base 2 (up to 1e7)
    const SPRP_2: [u64; 162] = [
        2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,65281,74665,80581,85489,88357,90751,104653,
        130561,196093,220729,233017,252601,253241,256999,271951,280601,314821,357761,390937,458989,476971,
        486737,489997,514447,580337,635401,647089,741751,800605,818201,838861,873181,877099,916327,976873,
        983401,1004653,1016801,1023121,1082401,1145257,1194649,1207361,1251949,1252697,1302451,1325843,1357441,
        1373653,1397419,1441091,1493857,1507963,1509709,1530787,1678541,1730977,1811573,1876393,1907851,1909001,
        1969417,1987021,2004403,2081713,2181961,2205967,2264369,2269093,2284453,2304167,2387797,2419385,2510569,
        2746477,2748023,2757241,2811271,2909197,2953711,2976487,3090091,3116107,3125281,3375041,3400013,3429037,
        3539101,3567481,3581761,3605429,3898129,4181921,4188889,4335241,4360621,4469471,4502485,4513841,4682833,
        4835209,4863127,5016191,5044033,5049001,5173169,5173601,5256091,5310721,5444489,5489641,5590621,5599765,
        5672041,5681809,5919187,6140161,6226193,6233977,6334351,6368689,6386993,6787327,6836233,6952037,7177105,
        7306261,7306561,7462001,7674967,7759937,7820201,7883731,8036033,8095447,8384513,8388607,8534233,8725753,
        8727391,9006401,9056501,9069229,9073513,9371251,9564169,9567673,9588151,9729301,9774181,9863461,9995671
    ];

    #[test]
    fn test_base2_nzu64_1e7() {
        // Miller-Rabin primality test (base 2)
        // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
        // composite 2-SPRP list up to 2**64 ( http://miller-rabin.appspot.com/#links )
        // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html )
        // Miller-Rabin base 2 data (up to 1e15) ( http://ntheory.org/data/spsps.txt )
        let assumed: Vec<u64> = Vec::from(SPRP_2);
        let start_time = std::time::Instant::now();
        let result: Vec<u64> = (3..10_000_000).filter(|&n| {
            if (n & 1) == 0 { return false; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_3bases = mont.primetest_miller_3bases();
            let res_base2 = mont.primetest_base2();
            assert!(!res_3bases || res_base2);
            res_3bases != res_base2
        }).collect();
        assert_eq!(assumed, result);
        eprint!("test_base2_nzu64_1e7 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_base2_u64_1e7() {
        // Miller-Rabin primality test (base 2)
        // strong pseudoprimes to base 2 ( https://oeis.org/A001262 ): 2047,3277,4033,4681,8321,15841,29341,42799,49141,52633,...
        // composite 2-SPRP list up to 2**64 ( http://miller-rabin.appspot.com/#links )
        // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html )
        // Miller-Rabin base 2 data (up to 1e15) ( http://ntheory.org/data/spsps.txt )
        let assumed: Vec<u64> = Vec::from(SPRP_2);
        let start_time = std::time::Instant::now();
        let result: Vec<u64> = (3..10_000_000).filter(|&n| {
            if (n & 1) == 0 { return false; }
            let mont = Mont::<u64>::new(n);
            let res_3bases = mont.primetest_miller_3bases();
            let res_base2 = mont.primetest_base2();
            res_3bases != res_base2
        }).collect();
        assert_eq!(assumed, result);
        eprint!("test_base2_u64_1e7 {}us\n", start_time.elapsed().as_micros());
    }

    // #SLPSP Strong Lucas-Selfridge (up to 1e7)
    const SLPRP: [u64; 178] = [
        5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,75077,97439,100127,113573,115639,130139,155819,
        158399,161027,162133,176399,176471,189419,192509,197801,224369,230691,231703,243629,253259,268349,288919,
        313499,324899,353219,366799,391169,430127,436409,455519,487199,510479,572669,611399,622169,635627,636199,
        701999,794611,835999,839159,851927,871859,875879,887879,895439,950821,960859,1033997,1106327,1241099,
        1256293,1308119,1311389,1388903,1422319,1501439,1697183,1711469,1777159,1981559,2003579,2263127,2435423,
        2461211,2518889,2566409,2624399,2662277,2666711,2690759,2738969,2782079,2828699,2942081,2952071,3109049,
        3165119,3175883,3179609,3204599,3373649,3399527,3410531,3441239,3452147,3479111,3498879,3579599,3684251,
        3694079,3700559,3706169,3735521,3774377,3776219,3785699,3802499,3813011,3865319,3892529,3900797,3903791,
        4067279,4109363,4226777,4309631,4322399,4368869,4403027,4563719,4828277,4870847,5133281,5208377,5299139,
        5396999,5450201,5479109,5514479,5720219,5762629,5807759,5879411,5942627,6001379,6003923,6296291,6562891,
        6641189,6668099,6784721,6784861,6863291,6893531,6965639,7017949,7163441,7199399,7241639,7353917,7453619,
        7621499,8112899,8159759,8221121,8234159,8361989,8372849,8518127,8530559,8555009,8574551,8581219,8711699,
        8817899,8990279,9049319,9335969,9401893,9485951,9587411,9713027,9793313,9800981,9827711,9922337,9965069
    ];

    #[test]
    fn test_lucas_nzu64_1e7() {
        // Lucas primality test
        // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
        // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html )
        // Strong Lucas-Selfridge data (up to 1e15) ( http://ntheory.org/data/slpsps-baillie.txt )
        let assumed: Vec<u64> = Vec::from(SLPRP);
        let start_time = std::time::Instant::now();
        let result: Vec<u64> = (3..10_000_000).filter(|&n| {
            if (n & 1) == 0 { return false; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_3bases = mont.primetest_miller_3bases();
            let res_lucas = mont.primetest_lucas();
            assert!(!res_3bases || res_lucas);
            res_3bases != res_lucas
        }).collect();
        assert_eq!(assumed, result);
        eprint!("test_lucas_nzu64_1e7 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_lucas_u64_1e7() {
        // Lucas primality test
        // strong Lucas pseudoprimes ( https://oeis.org/A217255 ): 5459,5777,10877,16109,18971,22499,24569,25199,40309,58519,...
        // Pseudoprime Statistics, Tables, and Data ( http://ntheory.org/pseudoprimes.html )
        // Strong Lucas-Selfridge data (up to 1e15) ( http://ntheory.org/data/slpsps-baillie.txt )
        let assumed: Vec<u64> = Vec::from(SLPRP);
        let start_time = std::time::Instant::now();
        let result: Vec<u64> = (3..10_000_000).filter(|&n| {
            if (n & 1) == 0 { return false; }
            let mont = Mont::<u64>::new(n);
            let res_3bases = mont.primetest_miller_3bases();
            let res_lucas = mont.primetest_lucas();
            assert!(!res_3bases || res_lucas);
            res_3bases != res_lucas
        }).collect();
        assert_eq!(assumed, result);
        eprint!("test_lucas_u64_1e7 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_1e7() { // 24bit
        let start_time = std::time::Instant::now();
        for n in 3..10_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_3bases = mont.primetest_miller_3bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_3bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_1e7 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_1e7() { // 24bit
        let start_time = std::time::Instant::now();
        for n in 3..10_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_3bases = mont.primetest_miller_3bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_3bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_1e7 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_4e9() { // 32bit
        let start_time = std::time::Instant::now();
        for n in 4_000_000_000..4_010_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_3bases = mont.primetest_miller_3bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_3bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_4e9 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_4e9() { // 32bit
        let start_time = std::time::Instant::now();
        for n in 4_000_000_000..4_010_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_3bases = mont.primetest_miller_3bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_3bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_4e9 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_1e16() { // 54bit
        let start_time = std::time::Instant::now();
        for n in 10_000_000_000_000_000..10_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_1e16 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_1e16() { // 54bit
        let start_time = std::time::Instant::now();
        for n in 10_000_000_000_000_000..10_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_1e16 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_9e18() { // 63bit
        let start_time = std::time::Instant::now();
        for n in 9_000_000_000_000_000_000..9_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_9e18 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_9e18() { // 63bit
        let start_time = std::time::Instant::now();
        for n in 9_000_000_000_000_000_000..9_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_9e18 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_10e18() { // 64bit
        let start_time = std::time::Instant::now();
        for n in 10_000_000_000_000_000_000..10_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_10e18 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_10e18() { // 64bit
        let start_time = std::time::Instant::now();
        for n in 10_000_000_000_000_000_000..10_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_10e18 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_bpsw_nzu64_18e18() { // 64bit
        let start_time = std::time::Instant::now();
        for n in 18_000_000_000_000_000_000..18_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let nn = NonZeroU64::new(n).unwrap();
            let mont = Mont::<NonZeroU64>::new(nn);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_nzu64_18e18 {}us\n", start_time.elapsed().as_micros());
    }
    #[test]
    fn test_bpsw_u64_18e18() { // 64bit
        let start_time = std::time::Instant::now();
        for n in 18_000_000_000_000_000_000..18_000_000_000_010_000_000 {
            if (n & 1) == 0 { continue; }
            let mont = Mont::<u64>::new(n);
            let res_7bases = mont.primetest_miller_7bases();
            let res_bpsw = mont.primetest_bpsw();
            assert_eq!(res_7bases, res_bpsw);
        }
        eprint!("test_bpsw_u64_18e18 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_issq_u64() {
        let start_time = std::time::Instant::now();
        for i in 0xffff_0000u64..=0xffff_ffff {
            let n = i * i;
            assert!(issq_u64(n));
        }
        eprint!("test_issq_u64 {}us\n", start_time.elapsed().as_micros());
    }

    #[test]
    fn test_issq_u64_p1() {
        let start_time = std::time::Instant::now();
        for i in 0xffff_0000u64..=0xffff_ffff {
            let n = i * i + 1;
            assert!(!issq_u64(n));
        }
        eprint!("test_issq_u64_p1 {}us\n", start_time.elapsed().as_micros());
    }

}

fn main() {
    use std::io::{BufRead, Write};
    let start_time = std::time::Instant::now();
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    let input = std::io::stdin();
    let mut buf = String::new();
    let mut reader = std::io::BufReader::new(input.lock());
    reader.read_line(&mut buf).unwrap();
    let n = buf.trim().parse::<usize>().unwrap();
    for _ in 0..n {
        buf.clear();
        reader.read_line(&mut buf).unwrap();
        let xs = buf.trim();
        let res = if USE_NZU64 {
            primetest_nzu64_bpsw(xs.parse::<NonZeroU64>().unwrap())
        } else {
            primetest_u64_bpsw(xs.parse::<u64>().unwrap())
        };
        out.write(xs.as_bytes()).unwrap();
        out.write(if res { b" 1\n" } else { b" 0\n" }).unwrap();
    }
    eprintln!("{}us", start_time.elapsed().as_micros());
}
0