結果
問題 | No.1946 ロッカーの問題 |
ユーザー | atcoder8 |
提出日時 | 2022-09-09 08:00:24 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 80 ms / 3,000 ms |
コード長 | 7,132 bytes |
コンパイル時間 | 12,315 ms |
コンパイル使用メモリ | 383,040 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-25 05:25:40 |
合計ジャッジ時間 | 13,597 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 4 ms
6,820 KB |
testcase_03 | AC | 69 ms
6,820 KB |
testcase_04 | AC | 4 ms
6,816 KB |
testcase_05 | AC | 6 ms
6,820 KB |
testcase_06 | AC | 6 ms
6,816 KB |
testcase_07 | AC | 5 ms
6,816 KB |
testcase_08 | AC | 21 ms
6,816 KB |
testcase_09 | AC | 55 ms
6,816 KB |
testcase_10 | AC | 48 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 14 ms
6,820 KB |
testcase_13 | AC | 0 ms
6,820 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 1 ms
6,816 KB |
testcase_16 | AC | 1 ms
6,816 KB |
testcase_17 | AC | 39 ms
6,816 KB |
testcase_18 | AC | 80 ms
6,820 KB |
ソースコード
use crate::atcoder8_library::eratosthenes_sieve::EratosthenesSieve; fn main() { let (n, _m) = { let mut line = String::new(); std::io::stdin().read_line(&mut line).unwrap(); let mut iter = line.split_whitespace(); ( iter.next().unwrap().parse::<usize>().unwrap(), iter.next().unwrap().parse::<usize>().unwrap(), ) }; let aa = { let mut line = String::new(); std::io::stdin().read_line(&mut line).unwrap(); line.split_whitespace() .map(|x| x.parse::<usize>().unwrap()) .collect::<Vec<_>>() }; let mut actual = vec![false; n + 1]; for &a in aa.iter() { actual[a] = true; } let mut ans = 0_u32; let mut lockers = vec![false; n + 1]; let sieve = EratosthenesSieve::new(n); for i in (1..=n).rev() { if lockers[i] == actual[i] { ans += 1; } else { let divisors = sieve.create_divisors_list(i); for d in divisors { lockers[d] = !lockers[d]; } } } println!("{}", ans); } pub mod atcoder8_library { pub mod eratosthenes_sieve { //! Implements the Sieve of Eratosthenes. //! //! Finds the smallest prime factor of each number placed on the sieve, //! so it can perform Prime Factorization as well as Primality Test. #[derive(Debug, Clone)] pub struct EratosthenesSieve { sieve: Vec<usize>, } impl EratosthenesSieve { /// Constructs a Sieve of Eratosthenes. /// /// # Arguments /// /// * `upper_limit` - The largest number placed on the sieve. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// ``` pub fn new(upper_limit: usize) -> Self { let mut sieve: Vec<usize> = (0..=upper_limit).collect(); for p in (2..).take_while(|&i| i * i <= upper_limit) { if sieve[p] != p { continue; } for i in ((p * p)..=upper_limit).step_by(p) { if sieve[i] == i { sieve[i] = p; } } } Self { sieve } } /// Returns the least divisor of `n`. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.min_divisor(1), 1); /// assert_eq!(sieve.min_divisor(2), 2); /// assert_eq!(sieve.min_divisor(6), 2); /// assert_eq!(sieve.min_divisor(11), 11); /// assert_eq!(sieve.min_divisor(27), 3); /// ``` pub fn min_divisor(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); self.sieve[n] } /// Determines if `n` is prime. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert!(!sieve.is_prime(1)); /// assert!(sieve.is_prime(2)); /// assert!(!sieve.is_prime(6)); /// assert!(sieve.is_prime(11)); /// assert!(!sieve.is_prime(27)); /// ``` pub fn is_prime(&self, n: usize) -> bool { n >= 2 && self.sieve[n] == n } /// Performs prime factorization of `n`. /// /// The result of the prime factorization is returned as a /// list of prime factor and exponent pairs. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(1), vec![]); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]); /// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]); /// ``` pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> { assert_ne!(n, 0, "`n` must be at least 1."); let mut factors: Vec<(usize, usize)> = vec![]; let mut t = n; while t != 1 { let p = self.sieve[t]; if factors.is_empty() || factors.last().unwrap().0 != p { factors.push((p, 1)); } else { factors.last_mut().unwrap().1 += 1; } t /= p; } factors } /// Creates a list of divisors of `n`. /// /// The divisors are listed in ascending order. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.create_divisors_list(1), vec![1]); /// assert_eq!(sieve.create_divisors_list(12), vec![1, 2, 3, 4, 6, 12]); /// assert_eq!(sieve.create_divisors_list(19), vec![1, 19]); /// assert_eq!(sieve.create_divisors_list(27), vec![1, 3, 9, 27]); /// ``` pub fn create_divisors_list(&self, n: usize) -> Vec<usize> { assert_ne!(n, 0, "`n` must be at least 1."); let prime_factors = self.prime_factorization(n); let mut divisors = vec![1]; let divisors_num: usize = prime_factors.iter().map(|&(_, e)| e + 1).product(); divisors.reserve(divisors_num - 1); for (p, e) in prime_factors { let mut add_divisors = vec![]; add_divisors.reserve(divisors.len() * e); let mut mul = 1; for _ in 1..=e { mul *= p; for &d in divisors.iter() { add_divisors.push(d * mul); } } divisors.append(&mut add_divisors); } divisors.sort_unstable(); divisors } } } }