結果

問題 No.215 素数サイコロと合成数サイコロ (3-Hard)
ユーザー fumofumofunifumofumofuni
提出日時 2022-09-10 09:34:47
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,262 ms / 4,000 ms
コード長 10,091 bytes
コンパイル時間 3,284 ms
コンパイル使用メモリ 232,456 KB
実行使用メモリ 26,760 KB
最終ジャッジ日時 2024-11-26 11:12:33
合計ジャッジ時間 7,269 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,254 ms
26,760 KB
testcase_01 AC 1,262 ms
26,640 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={0,1,0,-1,1,1,-1,-1,0};
const ll dx[9]={1,0,-1,0,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template<class T> inline bool chmax(T& a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

const int mod = MOD;
const int max_n = 200005;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }
  bool operator==(const mint &p) const { return x == p.x; }
  bool operator!=(const mint &p) const { return x != p.x; }
  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
using vm=vector<mint>;
using vvm=vector<vm>;
struct combination {
  vector<mint> fact, ifact;
  combination(int n):fact(n+1),ifact(n+1) {
    assert(n < mod);
    fact[0] = 1;
    for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
    ifact[n] = fact[n].inv();
    for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
  }
  mint operator()(int n, int k) {
    if (k < 0 || k > n) return 0;
    return fact[n]*ifact[k]*ifact[n-k];
  }
}comb(max_n);

vm conv(vm a,vm b){
    vm c(a.size()+b.size()-1);
    rep(i,a.size()){
        rep(j,b.size()){
            c[i+j]+=a[i]*b[j];
        }
    }
    return c;
}



vector<mint> BerlekampMassey(const vector<mint> &s) {
  const int N = (int)s.size();
  vector<mint> b, c;
  b.reserve(N + 1);
  c.reserve(N + 1);
  b.push_back(mint(1));
  c.push_back(mint(1));
  mint y = mint(1);
  for (int ed = 1; ed <= N; ed++) {
    int l = int(c.size()), m = int(b.size());
    mint x = 0;
    for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
    b.emplace_back(mint(0));
    m++;
    if (x == mint(0)) continue;
    mint freq = x / y;
    if (l < m) {
      auto tmp = c;
      c.insert(begin(c), m - l, mint(0));
      for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
      b = tmp;
      y = x;
    } else {
      for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
    }
  }
  reverse(begin(c), end(c));
  return c;
}
template <typename mint>
vector<mint> kitamasa(vector<mint> Q,vector<mint> a) {
  assert(!Q.empty() && Q[0] != 0);
  assert((int)a.size() >= int(Q.size()) - 1);
  vector<mint> P(Q.size()*2-2);
  for(ll i=0;i<Q.size()-1;i++){
    for(ll j=0;j<Q.size();j++){
     P[i+j]+=a[i]*Q[j];
    }
  } 
  P.resize(Q.size() - 1);
  return P;
}



namespace NTT {
    // int32型のmodが取れるFFT。auto c=NTT::mul(a,b,mod)で受け取り。TIME指定。
	// ChineseRemと組み合わせてlong longにもできる
	std::vector<int> tmp;
	size_t sz = 1;
 
	inline int powMod(int n, int p, int m) {
		int res = 1;
		while (p) {
			if (p & 1) res = (ll)res * n % m;
			n = (ll)n * n % m;
			p >>= 1;
		}
		return (int)res;
	}
	inline int invMod(int n, int m) {
		return powMod(n, m - 2, m);
	}
 
	template <int Mod, int PrimitiveRoot>
	struct NTTPart {
		static std::vector<int> ntt(std::vector<int> a, bool inv = false) {
			size_t mask = sz - 1;
			size_t p = 0;
			for (size_t i = sz >> 1; i >= 1; i >>= 1) {
				auto& cur = (p & 1) ? tmp : a;
				auto& nex = (p & 1) ? a : tmp;
				int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
				if (inv) e = invMod(e, Mod);
				int w = 1;
				for (size_t j = 0; j < sz; j += i) {
					for (size_t k = 0; k < i; ++k) {
						nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;
					}
					w = (ll)w * e % Mod;
				}
				++p;
			}
			if (p & 1) std::swap(a, tmp);
			if (inv) {
				int invSz = invMod(sz, Mod);
				for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;
			}
			return a;
		}
		static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
			a = ntt(a);
			b = ntt(b);
			for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;
			a = ntt(a, true);
			return a;
		}
	};
 
	constexpr int M[] = {1224736769, 469762049, 167772161};
	constexpr int PR[] = {3, 3, 3};
	constexpr int NTT_CONVOLUTION_TIME = 3;
	/*
		X := max(a)*max(b)*max(|a|, |b|) のとき,
		NTT_CONVOLUTION_TIME <- 1: X <         1224736769 = 1.2*10^ 9 ~ 2^30
		NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59
		NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7くらいまで)
	*/
 
	inline void garner(std::vector<int> *c, int mod) {
		if (NTT_CONVOLUTION_TIME == 1) {
			for(auto& x : c[0]) x %= mod;
		}
		else if (NTT_CONVOLUTION_TIME == 2) {
			const int r01 = invMod(M[0], M[1]);
			for (size_t i = 0; i < sz; ++i) {
				c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];
				if (c[1][i] < 0) c[1][i] += M[1];
				c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;
			}
		}
		else if (NTT_CONVOLUTION_TIME == 3) {
			const int R01 = invMod(M[0], M[1]);
			const int R02 = invMod(M[0], M[2]);
			const int R12 = invMod(M[1], M[2]);
			const int M01 = (ll)M[0] * M[1] % mod;
			for (size_t i = 0; i < sz; ++i) {
				c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];
				if (c[1][i] < 0) c[1][i] += M[1];
				c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];
				if (c[2][i] < 0) c[2][i] += M[2];
				c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;
			}
		}
	}
	std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {
		for (auto& x : a) x %= mod;
		for (auto& x : b) x %= mod;
 
		size_t m = a.size() + b.size() - 1;
		sz = 1;
		while (m > sz) sz <<= 1;
		tmp.resize(sz);
		a.resize(sz, 0);
		b.resize(sz, 0);
 
		std::vector<int> c[NTT_CONVOLUTION_TIME];
		if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);
		if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);
		if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);
		for (auto& v : c) v.resize(m);
		garner(c, mod);
		return c[0];
	}
}; // !!! CHECK NTT_CONVOLUTION_TIME !!!




template<class T>
struct bostan_mori {
  vector<T> p, q;
  bostan_mori(vector<T> &_p, vector<T> &_q) : p(_p), q(_q) {}
  void rever(vector<T> &f) const {
    int d = f.size();
    rep(i, d) if (i&1) f[i] = -f[i];
  }
  void even(vector<T> &f) const {
    int d = (f.size() + 1) >> 1;
    rep(i, d) f[i] = f[i<<1];
    f.resize(d);
  }
  void odd(vector<T> &f) const {
    int d = f.size() >> 1;
    rep(i, d) f[i] = f[i<<1|1];
    f.resize(d);
  }
  vector<T> convolution(vector<T> a,vector<T> b) const{
    int n=a.size(),m=b.size();
    /*vector<T> c(n+m-1);
    rep(i,n)rep(j,m)c[i+j]+=a[i]*b[j];
    return c;*/
    vector<int> A(n);rep(i,n)A[i]=a[i].x;
    vector<int> B(m);rep(i,m)B[i]=b[i].x;
    vector<int> c=NTT::mul(A,B,MOD);
    vector<T> C(n+m-1);rep(i,n+m-1)C[i]=c[i];
    return C;
  }
  T operator[] (ll n) const {
    vector<T> _p(p), _q(q), _q_rev(q);
    rever(_q_rev);
    for (; n; n >>= 1) {
      _p = convolution(move(_p), _q_rev);
      if (n&1) odd(_p);
      else     even(_p);
      _q = convolution(move(_q), move(_q_rev));
      even(_q);
      _q_rev = _q; rever(_q_rev);
    }
    return _p[0] / _q[0];
  }
};
//https://nyaannyaan.github.io/library/fps/kitamasa.hpp
//https://atcoder.jp/contests/tdpc/submissions/34362182
//線形漸化式のprefixからn項目を復元できる。
bostan_mori<mint> interpolation(vm a){
  auto q=BerlekampMassey(a);
  auto p=kitamasa(q,a);
  //for(auto x:p)cout << x <<" ";cout << endl;
  //for(auto x:q)cout << x <<" ";cout << endl;
  return bostan_mori<mint>(p,q);
}

int main(){
    ll n,p,c;cin >> n >> p >> c;
    vl prime={2,3,5,7,11,13};
    vl compos={4,6,8,9,10,12};
    vvm dp(301,vm(4000));dp[0][0]=1;
    {
        rep(i,6){
            rep(j,300){
                rep(k,4000){
                    if(k+prime[i]<4000)dp[j+1][k+prime[i]]+=dp[j][k];
                }
            }
        }
    }
    vvm ndp(301,vm(4000));ndp[0][0]=1;
    {
        rep(i,6){
            rep(j,300){
                rep(k,4000){
                    if(k+compos[i]<4000)ndp[j+1][k+compos[i]]+=ndp[j][k];
                }
            }
        }
    }
    auto f=dp[p];auto g=ndp[c];
    f=conv(f,g);
    while(f.back().x==0)f.pop_back();
    {
        ll m=f.size()*2;
        vm naive(m);
        rep(i,f.size())naive[i]=1;
        for(ll j=f.size();j<m;j++){
            rep(k,f.size()){
                naive[j]+=naive[j-k]*f[k];
            }
        }
        //rep(i,m)cout << naive[i] <<" ";cout << endl;
        //rep(_,f.size())naive.pop_back();
        auto bm=interpolation(naive);
        //rep(i,m)cout << bm[i] <<" ";cout << endl;
        cout << bm[n+f.size()-1] << endl;
        //cout << INF << endl;
    }
}
0