結果

問題 No.2180 Comprehensive Line Segments
ユーザー MasKoaTSMasKoaTS
提出日時 2022-09-11 18:18:51
言語 PyPy3
(7.3.15)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,111 bytes
コンパイル時間 284 ms
コンパイル使用メモリ 82,096 KB
実行使用メモリ 1,321,940 KB
最終ジャッジ日時 2024-11-17 00:51:38
合計ジャッジ時間 76,152 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 238 ms
100,496 KB
testcase_01 MLE -
testcase_02 AC 131 ms
95,304 KB
testcase_03 MLE -
testcase_04 MLE -
testcase_05 AC 164 ms
88,508 KB
testcase_06 MLE -
testcase_07 AC 137 ms
88,420 KB
testcase_08 AC 138 ms
88,268 KB
testcase_09 AC 216 ms
101,956 KB
testcase_10 AC 348 ms
152,504 KB
testcase_11 MLE -
testcase_12 MLE -
testcase_13 TLE -
testcase_14 MLE -
testcase_15 MLE -
testcase_16 TLE -
testcase_17 MLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 AC 211 ms
90,152 KB
testcase_21 MLE -
testcase_22 AC 330 ms
96,004 KB
testcase_23 AC 1,611 ms
251,900 KB
testcase_24 AC 649 ms
121,424 KB
testcase_25 TLE -
testcase_26 MLE -
testcase_27 WA -
testcase_28 MLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from collections import deque
from fractions import Fraction as frac
input = sys.stdin.readline
INF = 10 ** 9

class Point:
	def __init__(self, x: frac, y: frac):
		self.x = x
		self.y = y

	def __eq__(self, other):
		return (self.x == other.x and self.y == other.y)

	def __hash__(self):
		return hash((self.x, self.y))

	def __lt__(self, other):
		if(self.x == other.x):
			return (self.y < other.y)
		return (self.x < other.x)

	def show(self):
		print(self.x, self.y)

	def calcLine(self, other):
		x1 = self.x;  y1 = self.y
		x2 = other.x;  y2 = other.y
		if(x1 == x2):
			return Line(frac(1), frac(0), x1)
		a = (y1 - y2) / (x1 - x2)
		c = y1 - a * x1
		return Line(-a, frac(1), c)

class Line:
	def __init__(self, a: frac, b:frac, c:frac):
		self.a = a
		self.b = b
		self.c = c

	def __eq__(self, other):
		return (self.a == other.a and self.b == other.b and self.c == other.c)

	def __hash__(self):
		return hash((self.a, self.b, self.c))

	def show(self):
		print((self.a, self.b, self.c))

	def intersection(self, other) -> Point:
		p = self.a * other.b - other.a * self.b
		if(p == frac(0)):
			return None
		q = other.b * self.c - self.b * other.c
		x = q / p
		y = (other.c - other.a * x) / other.b if(self.b == 0) else (self.c - self.a * x) / self.b
		return Point(x, y)


"""
Main Code
"""

# 入力
N = int(input())
P = [Point(*map(frac, input().split())) for _ in [0] * N]

# 点が1個のときは必ず答え1
if(N == 1):
	print(1)
	exit(0)

# 各点に番号付け
ph = {}
pt_id = 0
for p in P:
	ph[p] = pt_id
	pt_id += 1

# 有り得る直線を調べて番号付け
ln_id = 0
lh = {}
for i in range(N - 1):
	for j in range(i + 1, N):
		p1, p2 = P[i], P[j]
		l = p1.calcLine(p2)
		if(l in lh):
			continue
		lh[l] = ln_id
		ln_id += 1

# 有り得る交点を調べて番号付け
lis = list(lh.keys())
for i in range(ln_id - 1):
	for j in range(i + 1, ln_id):
		l1, l2 = lis[i], lis[j]
		p = l1.intersection(l2)
		if(p is None or p in ph):
			continue
		P.append(p)
		ph[p] = pt_id
		pt_id += 1

# 任意の2点について、2点が属する直線とその方向を調べる
dir_lis = [[None]*pt_id for _ in [0]*pt_id]
for i in range(pt_id - 1):
	for j in range(i + 1, pt_id):
		p1, p2 = P[i], P[j]
		l = p1.calcLine(p2)
		if(l not in lh):
			continue
		dir_lis[i][j] = (lh[l], (p1 < p2))
		dir_lis[j][i] = (lh[l], (p2 < p1))

# グラフ探索
dp = [[[[INF]*2 for _ in [0]*(ln_id + 1)] for _ in [0]*pt_id] for _ in [0]*(1 << N)]
que = deque([])
for i in range(N):
	que.append((0, 1 << i, i, ln_id, 0))
	dp[1 << i][i][ln_id][0] = 0
goal = (1 << N) - 1
ans = INF
cnt = 0
while(que):
	c, b, v, l, a = que.popleft()
	if(l != ln_id and c > dp[b][v][l][a]):
		continue
	if(b == goal):
		ans = c
		break
	for nv in range(pt_id):
		nb = b
		if(nv < N):
			nb = b | (1 << nv)
		if(dir_lis[v][nv] is None):
			continue
		nl, na = dir_lis[v][nv]
		nc = c
		if(l == ln_id or (l, a) != (nl, na)):
			nc += 1
		if(nc >= dp[nb][nv][nl][na]):
			continue
		dp[nb][nv][nl][na] = nc
		if(nc == c):
			que.appendleft((nc, nb, nv, nl, na))
		else:
			que.append((nc, nb, nv, nl, na))
print(ans)
0