結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2022-09-13 22:06:23 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 17 ms / 9,973 ms |
| コード長 | 13,416 bytes |
| コンパイル時間 | 2,576 ms |
| コンパイル使用メモリ | 47,192 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-14 06:17:35 |
| 合計ジャッジ時間 | 3,265 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#pragma GCC optimize("O3")
#pragma GCC target("avx2")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("fast-math")
#define _GNU_SOURCE
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
// clang-format off
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
typedef float f32;
typedef double f64;
typedef long double f80;
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define SWAP_REF(a, b) \
do { \
(a) ^= (b); \
(b) ^= (a); \
(a) ^= (b); \
} \
while(0);
#define CTZ32(a) ((a) ? __builtin_ctz((a)) : (32))
#define CTZ64(a) ((a) ? __builtin_ctzll((a)) : (64))
#define CLZ32(a) ((a) ? __builtin_clz((a)) : (32))
#define CLZ64(a) ((a) ? __builtin_clzll((a)) : (64))
#define POPCNT32(a) ((a) ? __builtin_popcount((a)) : (0))
#define POPCNT64(a) ((a) ? __builtin_popcountll((a)) : (0))
#define MSB32(a) ((a) ? ((31) - __builtin_clz((a))) : (-1))
#define MSB64(a) ((a) ? ((63) - __builtin_clzll((a))) : (-1))
#define LSBit(a) ((a) & (-(a)))
#define CLSBit(a) ((a) & ((a) - (1)))
#define _ROTL32_INNER(x, l) (((x) << (l)) | ((x) >> ((-l) & (31))))
#define _ROTR32_INNER(x, r) (((x) >> (r)) | ((x) << ((-r) & (31))))
#define _ROTL64_INNER(x, l) (((x) << (l)) | ((x) >> ((-l) & (63))))
#define _ROTR64_INNER(x, r) (((x) >> (r)) | ((x) << ((-r) & (63))))
#define ROTR32(x, r) (((r) < (0)) ? (_ROTL32_INNER((x), ((u64)(-r) % (32)))) : (_ROTR32_INNER((x), ((r) % (32)))))
#define ROTL32(x, l) ROTR32((x), (-l))
#define ROTR64(x, r) (((r) < (0)) ? (_ROTL64_INNER((x), ((u64)(-r) % (64)))) : (_ROTR64_INNER((x), ((r) % (64)))))
#define ROTL64(x, l) ROTR64((x), (-l))
#define BIT_FLOOR32(a) ((a) ? (1u) << MSB32((a)) : (0))
#define BIT_FLOOR64(a) ((a) ? (1ull) << MSB64((a)) : (0))
#define BIT_CEIL32_REF(a) \
do { \
--(a); \
(a) |= (a) >> (1); \
(a) |= (a) >> (2); \
(a) |= (a) >> (4); \
(a) |= (a) >> (8); \
(a) |= (a) >> (16); \
(a)++; \
} while(0);
#define BIT_CEIL64_REF(a) \
do { \
--(a); \
(a) |= (a) >> (1); \
(a) |= (a) >> (2); \
(a) |= (a) >> (4); \
(a) |= (a) >> (8); \
(a) |= (a) >> (16); \
(a) |= (a) >> (32); \
(a)++; \
} while(0);
i32 in_i32(void) { i32 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; }
static inline void out_i32_inner(i32 x) { if (x >= 10) out_i32_inner(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); }
void out_i32(i32 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } out_i32_inner(x); }
i64 in_i64(void) { i64 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; }
static inline void out_i64_inner(i64 x) { if (x >= 10) out_i64_inner(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); }
void out_i64(i64 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } out_i64_inner(x); }
u32 in_u32(void) { u32 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; }
void out_u32(u32 x) { if (x >= 10) out_u32(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); }
u64 in_u64(void) { u64 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; }
void out_u64(u64 x) { if (x >= 10) out_u64(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); }
void NL(void) { putchar_unlocked('\n'); }
void SP(void) { putchar_unlocked(' '); }
void dump_i32(i32 x) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", x); }
void dump_i64(i64 x) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", x); }
void dump_u32(u32 x) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", x); }
void dump_u64(u64 x) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", x); }
void dump_i32_array(i32 *a, int a_len) { for (int i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m ", a[i]); } } }
void dump_i64_array(i64 *a, int a_len) { for (int i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m ", a[i]); } } }
void dump_u32_array(u32 *a, int a_len) { for (int i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m ", a[i]); } } }
void dump_u64_array(u64 *a, int a_len) { for (int i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m ", a[i]); } } }
void dump_i32_array_range(i32 *a, int a_len, int l, int r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (int i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m ", a[i]); } } }
void dump_i64_array_range(i64 *a, int a_len, int l, int r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (int i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m ", a[i]); } } }
void dump_u32_array_range(u32 *a, int a_len, int l, int r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (int i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m ", a[i]); } } }
void dump_u64_array_range(u64 *a, int a_len, int l, int r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (int i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m ", a[i]); } } }
void printb_32bit(u32 v) { u32 mask = (u32)1 << (sizeof(v) * CHAR_BIT - 1); do { putchar_unlocked(mask & v ? '1' : '0'); } while (mask >>= 1); }
void printb_64bit(u64 v) { u64 mask = (u64)1 << (sizeof(v) * CHAR_BIT - 1); do { putchar_unlocked(mask & v ? '1' : '0'); } while (mask >>= 1); }
// clang-format on
int jacobi_symbol(i64 a, u64 n) {
u64 t;
int j = 1;
while (a)
{
if (a < 0)
{
a = -a;
if ((n & 3) == 3)
j = -j;
}
int s = CTZ64(a);
a >>= s;
if (((n & 7) == 3 || (n & 7) == 5) && (s & 1))
j = -j;
if ((a & n & 3) == 3)
j = -j;
t = a, a = n, n = t;
a %= n;
if ((u64)(a) > n / 2)
a -= n;
}
return n == 1 ? j : 0;
}
bool is_square(u64 N)
{
if (N <= 1)
return true;
if ((0x02030213u >> ((u32)N & 31)) & 1 != 1)
return false;
const u64 SQTABLE_MOD4095[64] =
{
0x2001002010213ul, 0x4200001008028001ul, 0x20000010004ul, 0x80200082010ul,
0x1800008200044029ul, 0x120080000010ul, 0x2200000080410400ul, 0x8100041000200800ul,
0x800004000020100ul, 0x402000400082201ul, 0x9004000040ul, 0x800002000880ul,
0x18002000012000ul, 0x801208ul, 0x26100000804010ul, 0x80000080000002ul,
0x108040040101045ul, 0x20c00004000102ul, 0x400000100c0010ul, 0x1300000040208ul,
0x804000020010000ul, 0x1008402002400080ul, 0x201001000200040ul, 0x4402000000806000ul,
0x10402000000ul, 0x1040008001200801ul, 0x4080000000020400ul, 0x10083080000002ul,
0x8220140000040000ul, 0x800084020100000ul, 0x80010400010000ul, 0x1200020108008060ul,
0x180000000ul, 0x400002400000018ul, 0x4241000200ul, 0x100800000000ul,
0x10201008400483ul, 0xc008000208201000ul, 0x800420000100ul, 0x2010002000410ul,
0x28041000000ul, 0x4010080000024ul, 0x400480010010080ul, 0x200040028000008ul,
0x100810084020ul, 0x20c0401000080000ul, 0x1000240000220000ul, 0x4000020800ul,
0x410000000480000ul, 0x8004008000804201ul, 0x806020000104000ul, 0x2080002000211000ul,
0x1001008001000ul, 0x20000010024000ul, 0x480200002040000ul, 0x48200044008000ul,
0x100000000010080ul, 0x80090400042ul, 0x41040200800200ul, 0x4000020100110ul,
0x2000400082200010ul, 0x1008200000000040ul, 0x2004800002ul, 0x2002010000080ul
};
size_t p = N % 4095;
if ((SQTABLE_MOD4095[p >> 6] >> (p & 63)) & 1 != 1)
return false;
u64 newton_sqrt;
size_t k = 32 - (CLZ64(N - 1) >> 1);
u64 s = (u64)(1ul) << k;
u64 t = (s + (N >> k)) >> 1;
while (t < s)
{
s = t;
t = (s + N / s) >> 1;
}
newton_sqrt = s;
if (newton_sqrt * newton_sqrt != N)
return false;
return true;
}
/******************************/
/* 64bit montgomery reduction */
/******************************/
static u64 N = 0ul, NI = 0ul, R1 = 0ul, R2 = 0ul;
void Montgomery64(u64 n)
{
N = n;
NI = n;
for (int _ = 0; _ < 5; ++_)
{
NI *= 2 - NI * n;
}
R1 = (u64)(i64)-1 % n + 1;
R2 = (u128)(i128)-1 % n + 1;
}
u64 mr64(u128 A) { u64 y = (u64)(A >> 64) - (u64)(((u128)((u64)A * NI) * N) >> 64); return (i64)y < 0 ? y + N : y; }
u64 To(u64 a) { return mr64((u128)R2 * a); }
u64 From(u64 mra) { return mr64((u128)mra); }
u64 Add(u64 mra, u64 mrb) { mra += mrb; mra -= (mra >= N ? N : 0); return mra; }
u64 Sub(u64 mra, u64 mrb) { mra += (mra < mrb ? N : 0); mra -= mrb; return mra; }
u64 Min(u64 mra) { return Sub(0, mra); }
u64 Mul(u64 mra, u64 mrb) { return mr64((u128)mra * mrb); }
u64 Square(u64 mra) { return mr64((u128)mra * mra); }
u64 Twice(u64 mra) { return (mra <<= 1) >= N ? (mra - N) : mra; }
u64 Power(u64 mra, u64 k) { u64 ret = R1, a = mra; while (k > 0) { if (k & 1) { ret = Mul(ret, a); } a = Mul(a, a); k >>= 1; } return ret; }
u64 Inverse(u64 mra) { return Power(mra, N - 2); }
u64 Div(u64 mra, u64 mrb) { return Mul(mra, Inverse(mrb)); }
u64 Half(u64 mra) { return (mra & 1) ? ((mra >> 1) + (N >> 1) + 1) : (mra >> 1); }
int Equal(u64 mra, u64 mrb) { return (((mra >= N) ? (mra - N) : mra) == ((mrb >= N) ? (mrb - N) : mrb)) ? 1 : 0; }
int NotEqual(u64 mra, u64 mrb) { return (((mra >= N) ? (mra - N) : mra) != ((mrb >= N) ? (mrb - N) : mrb)) ? 1 : 0; }
u64 In() { u64 c = 0; u64 a = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { a = a * 10 + c - 48; c = getchar_unlocked(); } return To(a); }
void Out(u64 mra) { u64 a = From(mra); out_u64(a); }
bool baillie_psw(u64 n)
{
{
if (n < 2) return false;
if (n < 4) return true;
if (!(n & 1)) return false;
if (n % 3 == 0) return false;
}
Montgomery64(n);
{
u64 d = (n - 1) << CLZ64(n - 1);
u64 t = Twice(R1);
for (d <<= 1; d; d <<= 1)
{
t = Square(t);
if (d >> 63) t = Twice(t);
}
if (t != R1)
{
u64 x = LSBit(n - 1);
u64 rev = Min(R1);
for (x >>= 1; t != rev; x >>= 1)
{
if (x == 0) return false;
t = Square(t);
}
}
}
{
i64 D = 5;
for (int i = 0; jacobi_symbol(D, n) != -1 && i < 64; ++i)
{
if (i == 32 && is_square(n) == 0) return false;
if (i & 1) D -= 2;
else D += 2;
D = -D;
}
u64 Q = To((D < 0) ? ((1 - D) / 4 % n) : (n - (D - 1) / 4 % n));
u64 u = R1, v = R1, Qn = Q;
u64 k = (n + 1) << CLZ64(n + 1);
D %= (i64)n;
D = To((D < 0) ? (D + n) : D);
for (k <<= 1; k; k <<= 1)
{
u = Mul(u, v);
v = Sub(Square(v), Add(Qn, Qn));
Qn = Square(Qn);
if (k >> 63)
{
u64 uu = Add(u, v);
uu = Half(uu);
v = Half(Add(Mul(D, u), v));
u = uu;
Qn = Mul(Qn, Q);
}
}
if (u == 0 || v == 0) return true;
u64 x = (n + 1) & ~n;
for (x >>= 1; x; x >>= 1)
{
u = Mul(u, v);
v = Sub(Square(v), Add(Qn, Qn));
if (v == 0) return true;
Qn = Square(Qn);
}
}
return false;
}
int main(void)
{
int Q = in_i32();
while (Q--)
{
u64 x = in_u64();
out_u64(x);
SP();
out_i32(baillie_psw(x));
NL();
}
return 0;
}